Unitary representations of CM(3)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 274473
(http://iopscience.iop.org/0305-4470/27/13/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at $21: 26$

Please note that terms and conditions apply.

Unitary representations of $C M(3)$

Hirohumi Ogura \dagger and David J Rowe \ddagger
\dagger Instituto de Ciencias Exactas y Terrestres, Universidad Autónoma de Guadalajara, Apdo. Postal 1-440, CP 44100 Guadalajara, Jalisco, Mexico
\ddagger Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

Received 8 December 1993

Abstract

Irreducible unitary representations of the group $C M(3)$, the 'three-dimensional colfective motion group', which is the semidirect product of a six-dimensional Abelian group T_{6} and $S L(3, \mathbb{R})$, are constructed. A countable basis is identified in the carrier space of each representation. On each $S L(3, \mathbb{R})$ orbit, elements of the Lie algebra $\mathrm{cm}(3)$ are represented as differential operators. The relationship of the Bohr model and the $C M(3)$ model is discussed.

1. Introduction

The $C M(3)$ model [1-5] of nuclei is a microscopic formulation of Bohr's liquid drop model [6, 7] of nuclear collective quadrupole motion. Consider a nucleus consisting of A nucleons. Let x_{r} denote the i th component of the position of the nth nucleon in the Cartesian coordinate system. Let

$$
\begin{equation*}
Q_{i j}=\sum_{n=1}^{A} x_{i n} x_{j n} \quad i, j=1,2,3 \tag{1.1}
\end{equation*}
$$

These quadratic forms are decomposed into the monopole component

$$
\begin{equation*}
Q^{0}=\frac{1}{3} \sum_{i=1}^{3} Q_{i i} \tag{1.2}
\end{equation*}
$$

and the quadrupole components

$$
\begin{array}{ll}
Q_{ \pm 2}^{2}=\frac{1}{2}\left(Q_{11}-Q_{22}\right) \pm \mathrm{i} Q_{12} & Q_{ \pm 1}^{2}=\mp\left(Q_{13} \pm \mathrm{i} Q_{23}\right) \\
Q_{0}^{2}=\frac{1}{\sqrt{6}}\left(2 Q_{33}-Q_{11}-Q_{22}\right) . \tag{1.3}
\end{array}
$$

The Bohr model assumes that a nucleus is enclosed by a surface

$$
R=R_{0}\left(1+\sum_{\mu=-2}^{2} \alpha_{\mu} \bar{Y}_{2 \mu}(\theta, \phi)\right)
$$

and the average $\langle\rho(n)\rangle$ of the density operator $\rho(n)=\Sigma_{n=1}^{A} \delta\left(n-n_{n}\right)$ is $3 A /\left(4 \pi R_{0}^{3}\right)$ if $|n| \leqslant R_{0}$ and 0 if $|n|>R_{0}$. If the parameters α_{μ} are assumed to be small, the averages
of the quadrupole moments are

$$
\begin{equation*}
\left\langle Q_{\mu}^{2}\right\rangle=A \sqrt{\frac{3}{10 \pi}} R_{0}^{2} \alpha_{\mu} \quad \mu=0, \pm 1, \pm 2 \tag{1.4}
\end{equation*}
$$

However, these expressions can be derived apart from the above assumptions. Let $p_{i n}$ be the momentum conjugate to $x_{i n}$ and

$$
\begin{align*}
& \mathrm{i} S_{j k}=\mathrm{i} \sum_{n=1}^{A}\left(x_{j n} p_{k n}+x_{k n} p_{j n}\right) \quad j, k=1,2,3 \quad j \neq k \tag{1.5a}\\
& \mathrm{i} S_{j}=\mathrm{i} \sum_{n=1}^{A} x_{j n} p_{j n} \quad j=1,2,3 \tag{1.5b}
\end{align*}
$$

$\mathrm{i} L_{k}=\mathrm{i} \sum_{n=1}^{A}\left(x_{l n} p_{m n}-x_{m n} p_{l n}\right) \quad(k, l, m$ is a cyclic permutation of $1,2,3)$.
Suppose that $|0\rangle$ denotes the state of a nucleus of angular momentum 0 . Although $\langle 0| Q_{\mu}^{2}|0\rangle=0$, the averages of quadrupole moments in the state

$$
|\Phi\rangle=\exp \left(-\mathrm{i} \sum_{k=1}^{3} \xi_{k} S_{k}\right)|0\rangle
$$

$\xi_{k} \in \mathbb{R}$, are not 0 . That is,

$$
\begin{align*}
& \langle\Phi| Q_{0}^{2}|\Phi\rangle=q_{0}\left(\xi_{i}\right)\langle 0| Q^{0}|0\rangle \quad\langle\Phi| Q_{ \pm 2}^{2}|\Phi\rangle=\frac{q_{2}\left(\xi_{i}\right)}{\sqrt{2}}\langle 0| Q^{0}|0\rangle \\
& \langle\Phi| Q_{ \pm \pm}^{2}|\Phi\rangle=0 \tag{1.6}
\end{align*}
$$

where

$$
\begin{equation*}
q_{0}\left(\xi_{i}\right)=\frac{\left(2 \mathrm{e}^{2 \xi_{3}}-\mathrm{e}^{2 \xi_{1}}-\mathrm{e}^{2 \xi_{2}}\right)}{\sqrt{6}} \quad q_{2}\left(\xi_{i}\right)=\frac{\left(\mathrm{e}^{2 \xi_{1}}-\mathrm{e}^{2 \xi_{2}}\right)}{\sqrt{2}} . \tag{1.7}
\end{equation*}
$$

These expressions are derived from the commutation relations

$$
\left[\mathrm{i} \sum_{k=1}^{3} \xi_{k} S_{k}, Q_{j l}\right]=\left(\xi_{j}+\xi_{l}\right) Q_{j l}
$$

and the formula

$$
\begin{equation*}
\mathrm{e}^{Y} X \mathrm{e}^{-Y}=X+[Y, X]+\frac{1}{2!}[Y,[Y, X]]+\ldots \tag{1.8}
\end{equation*}
$$

If we evaluate the mean values of the quadrupole moments in the rotated state $|\Psi\rangle=$ $R(\phi, \theta, \psi)|\Phi\rangle$, where $R(\phi, \theta, \psi)=\exp \left(-\mathrm{i} \phi L_{3}\right) \exp \left(-\mathrm{i} \theta L_{2}\right) \exp \left(-\mathrm{i} \psi L_{3}\right)$, from equation (1.6) and $R^{-1} Q_{\mu}^{2} R=\Sigma_{v=-2}^{2} D_{\mu \nu}^{2}(\phi, \theta, \psi) Q_{v}^{2}$, we have

$$
\begin{align*}
\langle\Psi| Q_{\mu}^{2}|\Psi\rangle= & \langle 0| Q^{0}|0\rangle\left[D_{\mu, 0}^{2}(\phi, \theta, \psi) q_{0}\left(\xi_{i}\right)\right. \\
& \left.+\frac{1}{\sqrt{2}}\left(D_{\mu 2}^{2}(\phi, \theta, \psi)+D_{\mu,-2}^{2}(\phi, \theta, \psi)\right) q_{2}\left(\xi_{i}\right)\right] \tag{1.9}
\end{align*}
$$

(We adopt Bohr's D-function $D_{\mu \nu}^{J}(\phi, \theta, \psi)=\mathrm{e}^{\mathrm{i} \mu \phi} \mathrm{d}_{\mu \nu}^{J}(\theta) \mathrm{e}^{\mathrm{i} \nu \psi}$ throughout this paper.)

Expression (1.9) accords with expression (1.4) in the limit of small deformation. We may define the radius R_{0} of the nuclei by $\langle 0| Q^{0}|0\rangle=R_{0}^{2} A / 5$. This is because, if the density of the nuclei is constant, the formula holds. Let $\beta_{B}=\sqrt{\Sigma_{\mu=-2}^{2} \alpha_{\mu} \bar{\alpha}_{\mu}}$ and $\beta \in \mathbb{R}$ be a parameter such that $\sqrt{2 / 3} \beta=\sqrt{5 / 4 \pi} \beta_{B}$. If we set

$$
\xi=\sum_{k=1}^{3} \xi_{k} \quad \xi_{k}^{\prime}=\left(\xi_{k}-\frac{\xi}{3}\right)=\sqrt{\frac{2}{3}} \beta \cos \left(\gamma-\frac{2 \pi}{3} k\right) \quad k=1,2,3
$$

and assume that β is small, we have

$$
\begin{equation*}
q_{0}\left(\xi_{1}\right) \approx 2 \mathrm{e}^{2 \xi / 3} \beta \cos \gamma \quad q_{2}\left(\xi_{i}\right) \approx 2 \mathrm{e}^{2 \xi / 3} \beta \sin \gamma \tag{1.10}
\end{equation*}
$$

If we furthermore impose the condition of volume conservation $\xi=0$, the right side of equation (1.9) becomes the product of $A R_{0}^{2} \sqrt{3 / 10 \pi}$ and the well known expressions [6]

$$
\begin{gather*}
\alpha_{\mu}=\beta_{B}\left[D_{\mu, o}^{2}(\phi, \theta, \psi) \cos \gamma+\frac{1}{\sqrt{2}}\left(D_{\mu, 2}^{2}(\phi, \theta, \psi)+D_{\mu,-2}^{2}(\phi, \theta, \psi)\right) \sin \gamma\right] \tag{1.11}\\
\mu=0, \pm 1, \pm 2
\end{gather*}
$$

of the deformation parameters α_{μ}. Thus we may regard $|\Psi\rangle$ as a deformed state in the sense of quantum mechanics.

However, even if the deformed states are identified, we do not know how the states vary as time passes. In the Bohr model, equations of motions for the parameters α_{μ} are established by assuming that a nuclei is a liquid drop whose motion is governed by classical fluid dynamics. In the $C M(3)$ model, we must look for a Hamiltonian which is an element of the universal enveloping algebra [8] generated by the operators $Q_{l j}, S_{y j}, S_{k}$ and L_{k}. If we consider the correspondence of the parameters α_{μ} and the expectation values $\langle\Psi| Q_{\mu}^{2}|\Psi\rangle$, it is plausible to choose a Hamiltonian which accords with the Hamiltonian of the Bohr model in the limit of small deformation. Once a representation and Hamiltonian are chosen, the remaining problem is to identify a basis in the carrier space of the representation so that it becomes possible to diagonalize the Hamiltonian. It is the purpose of this article to construct irreducible representations of $C M(3)$ and identify bases for the carrier spaces.

The operators $Q_{y j}, \mathrm{i} S_{j k}, \mathrm{i} S_{k}$ and $\mathrm{i} L_{k}$ form a real Lie algebra with respect to the commutation relation induced from the canonical commutation relations $\left[x_{j m}, p_{k n}\right]=$ $\mathrm{i} \delta_{j k} \delta_{m n}$. Let span $\left\{X_{i}\right\}$ denote the vector space generated by some vectors X_{1}. The Lie algebra $c=\operatorname{span}\left\{Q_{i j}, \mathrm{i} S_{j k}, \mathrm{i} S_{k}, \mathrm{i} L_{k}\right\}$ is the semidirect sum [9] of the commutative ideal $t_{6}=\operatorname{span}\left\{Q_{y}\right\}$ and the subalgebra $g=\operatorname{span}\left\{\mathrm{i} S_{j k}, i S_{k}, \mathrm{i} L_{k}\right\}$. Denote $\frac{1}{3} \Sigma_{k=1}^{3} S_{k}$ by S^{0} and $S_{k}-S^{0}$ by S_{k}^{2}, respectively. Let $s g=\operatorname{span}\left\{\mathrm{i} S_{j k}, \mathrm{i} S_{k}^{2}, i L_{k}\right\}$. Then $s g$ is a subalgebra of g and $g=s g \oplus \operatorname{span}\left\{i S^{0}\right\}$, where $\mathrm{i} S^{0}$ commutes with any element of sg. Since $\Sigma_{k=1}^{3} \xi_{k} S_{k}=\left(\Sigma_{k=1}^{3} \xi_{k}\right) S^{0}+\Sigma_{k=1}^{3} \xi_{k} S_{k}^{2}$, removing S^{0} from g and imposing the condition of volume conservation are equivalent. Here, we shall adopt the volume conservation condition and consider representations of the Lie algebra $\mathrm{cm}(3)=t_{6} \oplus s g$. By doing so, we can suppress scaling factors which make formulae onerous, do not lose any essential content of the theory and, furthermore, incorporating later volume variation by S^{0} does not cause any difficulty.

2. Group $C M(3)$

In this section, we shall construct a topological group $C M(3)$ of the algebra $\mathrm{cm}(3)$ from the following: (i) as is seen from the form of the wavefunction $|\Psi\rangle$, the deformation
is generated by exponential functions of the elements of g; (ii) the representations of the Lie algebra are obtained from those of the group by differentiation. In general, a group generated by an algebra is more connotative. We need some additional assumptions to make a group of an algebra.

Instead of defining the domain and the range of the elements of $\mathrm{cm}(3)$ in a Hilbert space, we shall proceed formally. For $\kappa=\left(\kappa_{11}, \kappa_{12}, \kappa_{13}, \kappa_{22}, \kappa_{23}, \kappa_{33}\right) \in \mathbb{R}^{6}$, let $U_{k}=$ $\exp \left(\mathrm{i} \Sigma_{i \leqslant j} \kappa_{i j} Q_{i j}\right)$, where the exponential is defined by the formal power series whose first term is the 'identity' I. Since $Q_{i j}$ s commute mutually, $U_{\kappa} U_{x^{\prime}}=U_{x+\kappa^{\prime}}$ for $\kappa, \kappa^{\prime} \in \mathbb{R}^{6}$. Let $0=(0,0,0,0,0,0)$. As $U_{0} U_{\kappa}=U_{\kappa} U_{0}=U_{\kappa}, U_{0}=I$. From $U_{\kappa} U_{-\kappa}=I$, we have $U_{x}^{-1}=U_{-x}$. If we define an ε-neighbourhood of U_{x} by $B\left(U_{\kappa}, \varepsilon\right)=$ $\left\{U_{x^{\prime}} \mid \sqrt{\Sigma_{i \leqslant j}\left(\kappa_{i j}-\kappa_{i j}^{\prime}\right)^{2}}<\varepsilon\right\}$, then the collection $T_{6}=\left\{U_{\kappa} \mid \kappa \in \mathbb{R}^{6}\right\}$ becomes a six-dimensional Abelian group which is homeomorphic to \mathbb{R}^{6}.

Next we shall make a group of the Lie algebra sg and make it homoeomorphic to $S L(3, \mathbb{R})$. Let $X_{j k}=\mathrm{i} \Sigma_{n=1}^{A} x_{j n} p_{k n}, i, k=1,2,3$. Then $g=\operatorname{span}\left\{X_{i j} \mid i, j=1,2,3\right\}$. Let $E_{i j}$ denote the matrix unit of 3×3 matrices whose (i, j) component is 1 and the other components are 0 . A linear map $h: g \rightarrow g l(3, \mathbb{R})$ defined by $h\left(X_{i j}\right)=-E_{j h}$ is an isomorphism, and so is the restriction $h \mid s g: s g \rightarrow s l(3, \mathbb{R})$.

The Lie algebra $\operatorname{sl}(3, \mathbb{R})$ generates the group $S L(3, \mathbb{R})=\{g \in g l(3, \mathbb{R}) \mid \operatorname{det} g=1\}$. However, the isomorphism of sg and $s l(3, \mathbb{R})$ does not a priori imply the homeomorphism of $S L(3, \mathbb{R})$ and a group generated by $s g$. Let $\|\varepsilon\|$ denote the Euclidean norm $\sqrt{\operatorname{Tr}\left(\varepsilon \varepsilon^{\mathrm{T}}\right)}$ of $\varepsilon \in g l(3, \mathbb{R})$. Usually $\operatorname{sl}(3, \mathbb{R})$ and $S L(3, \mathbb{R})$ are given the subspace topology of \mathbb{R}^{9} induced by the Euclidean metric $d(\alpha, \beta)=\|\alpha-\beta\|$, where $\alpha, \beta \in s l(3, \mathbb{R})$ or $\alpha, \beta \in S L(3, \mathbb{R})$. In that topology, $s l(3, \mathbb{R}) \cong \mathbb{R}^{8}$, where ' \cong ' means 'be homeomorphic to'.

If $\varepsilon \in \operatorname{sl}(3, \mathbb{R})$, the exponential series $\exp (\varepsilon)=\sum_{n=0}^{\infty} \varepsilon^{n} / n!$ belongs to $S L(3, \mathbb{R})$. Let 0 and I denote zero and the identity of $s l(3, \mathbb{R})$ and $S L(3, \mathbb{R})$, respectively. Let $B(0, \log 2)=\{\varepsilon \in s l(3, \mathbb{R}) \mid\|\varepsilon\|<\log 2\}$ and $W=\{\exp \varepsilon \mid \varepsilon \in B(0, \log 2)\}$. Then W is a neighbourhood of $I \in S L(3, \mathbb{R})$. On W, the logarithmic series $\log g=\sum_{n=1}^{\infty}(I-g)^{n} / n$ absolutely converges, and it holds that $[10] \exp (\log g)=g$. Since $\exp B(0, \log 2)$ and its inverse $\log \mid W$ are continuous, $B(0, \log 2)$ is homeomorphic to W.

As $W^{-1}=\left\{w^{-1} \mid w \in W\right\}=W$, any $g \in S L(3, \mathbb{R})$ can be represented à product of finitely many elements [11] of W, that is, $g=g_{1} \ldots g_{n}$ for some non-negative integer n and some $g_{1}, \ldots, g_{n} \in W$. If $g_{i} \in W, \varepsilon_{\mathrm{f}}=\log g_{\text {, }}$ belongs to $B(\mathbf{0}, \log 2)$ and therefore

$$
\begin{equation*}
g=\exp \left(\varepsilon_{1}\right) \ldots \exp \left(\varepsilon_{n}\right) \tag{2.1}
\end{equation*}
$$

for some $\varepsilon_{1}, \ldots, \varepsilon_{n} \in B(0, \log 2)$.
For $\varepsilon=\left(\varepsilon_{i j}\right) \in s l(3, \mathbb{R})$ let

$$
U_{\varepsilon}=\exp \left(-\sum_{i, j=1}^{3} \varepsilon_{i j} \mathrm{X}_{j i}\right)
$$

be a formal power series. Then $U_{0}=I$ and $U_{\varepsilon}^{-1}=U_{-\varepsilon}$. Let

$$
W_{s g}^{n}=\left\{U_{\varepsilon_{1}} \ldots U_{\varepsilon_{n}} \mid \varepsilon_{1}, \ldots, \varepsilon_{n} \in s l(3, \mathbb{R})\right\}
$$

Then $S G=\bigcup_{n=1}^{\infty} W_{s g}^{n}$ becomes a group.

From the commutation relation

$$
\left[\sum_{i, j=1}^{3} \varepsilon_{i j} X_{j i}, x_{k n}\right]=\sum_{i=1}^{3} \varepsilon_{k j} x_{j n} \quad \mathrm{i}=1,2,3 \quad n=1,2, \ldots, A
$$

and formula (1.8), we have

$$
\begin{equation*}
U_{\varepsilon} x_{t n} U_{\varepsilon}^{-1}=\sum_{j=1}^{3}\left[\exp \left(-\varepsilon^{\mathrm{T}}\right)\right]_{j i} x_{j n} \quad i=1,2,3 \quad n=1,2, \ldots, A \tag{2.2}
\end{equation*}
$$

Let ϕ denote this map $U_{\varepsilon} \rightarrow \exp \left(-\varepsilon^{\mathbf{T}}\right)$. Then the map $\phi: S G \rightarrow S L(3, \mathbb{R})$ satisfies $\phi\left(U_{\varepsilon} U_{\varepsilon}\right)=\phi\left(U_{\varepsilon}\right) \phi\left(U_{\varepsilon}\right)$. Also it is surjective. The reason for this is, given $g \in S L(3, \mathbb{R})$, $g=\exp \left(\varepsilon_{1}\right) \ldots \exp \left(\varepsilon_{n}\right)$ for some $\varepsilon_{1}, \ldots, \varepsilon_{n} \in B(0, \log 2)$ and $\phi\left(U_{-c_{1}^{\top}} \ldots U_{-\varepsilon_{n}^{\top}}\right)=g$.

Let Ker ϕ denote the kernel of ϕ. The kernel is not a one-point set. For example, elements $\exp \left(2 m \pi \mathrm{i} L_{k}\right)$, where $k=1,2,3$ and $m \in \mathbb{Z}$, belong to $\operatorname{Ker} \phi$. By the homomorphism theorem of group theory, $S G /$ Ker ϕ is isomorphic to $S L(3, \mathbb{R})$. Let ψ denote this isomorphism. If we define $\psi^{-1}(V)$ is open in $S G / \operatorname{Ker} \phi$ if and only if V is open in $S L(3, \mathbb{R})$, then $S G /$ Ker ϕ becomes homeomorphic to $S L(3, \mathbb{R})$. We hereafter denote $S G / \operatorname{Ker} \phi$ by $S L(3, \mathbb{R})$.

For $g=\exp \left(\varepsilon_{1}\right) \ldots \exp \left(\varepsilon_{n}\right)$, denote the residue class of $U_{-\varepsilon \epsilon} \ldots U_{-\varepsilon_{n}^{\tau}} \in S G$ by U_{g}. Also denote $\left(g^{\mathrm{T}}\right)^{-1}=\left(g^{-1}\right)^{\mathrm{T}}$ and its ($\left.i, j\right)$ component by g^{*} and $g_{i j}^{*}$, respectively. Then by equation (2.2) and the definition (1.1) of Q_{l}, for $a \in S L(3, \mathbb{R})$,

$$
\begin{equation*}
Q_{b j}^{\prime}=U_{\alpha} Q_{i j} U_{\alpha}^{-1}=\sum_{k, l=1}^{3} a_{k i}^{*} a_{l j}^{*} Q_{k l}=\sum_{k \leqslant l} A_{k l, y}(a) Q_{k l} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{k l, j j}(a)=a_{k i}^{*} a_{l j}^{*}+a_{l i}^{*} a_{k j}^{*} \quad \text { if } k<l \\
& A_{k k, i j}=a_{k k}^{*} a_{k j}^{*} .
\end{aligned}
$$

By straightforward calculation, the determinant of the 6×6 matrix $\left(A_{k l, j,}(a)\right.$) is shown to be $(\operatorname{det} a)^{-4}$, which is 1 for $\operatorname{det} a=1$. If we arrange $Q_{i j} \mathrm{~s}$ in the form of a 3×3 symmetric matrix,

$$
Q=\left(\begin{array}{lll}
Q_{11} & Q_{12} & Q_{13} \tag{2.4}\\
Q_{12} & Q_{22} & Q_{23} \\
Q_{13} & Q_{23} & Q_{33}
\end{array}\right)
$$

and denote $a^{-1} Q\left(a^{-1}\right)^{T}$ by $a^{-1} \cdot Q$ then equation (2.3) can be written as

$$
\begin{equation*}
Q^{\prime}=U_{a} Q U_{a}^{-1}=a^{-1} \cdot Q \tag{2.5}
\end{equation*}
$$

Now, the collection $C M(3)=\left\{U_{\kappa} U_{a} \mid U_{\kappa} \in T_{6}, U_{a} \in S L(3, \mathbb{R})\right\}$ is shown to be the semidirect product group $T_{6 \mathrm{sd}} S L(3, \mathbb{R})$. In fact, $I=U_{0} U_{1}$ is the identity. For $\kappa \in \mathbb{R}^{6}$ and $a \in S L(3, \mathbb{R})$, let $a \cdot \kappa$ be defined by $\Sigma_{k \leqslant 1} A_{i j, k l}(a) \kappa_{k l}$. Then $U_{o} U_{\kappa} U_{a}^{-1}=U_{a \cdot \kappa} \in T_{6}$. Therefore $U_{a}^{-1} U_{\kappa}^{-1}=U_{-a^{-1} \cdot{ }_{\kappa} U_{a}^{-1} \in C M(3) \text { is the inverse of } U_{\kappa} U_{a} \text { and } U_{\kappa} U_{a} U_{\kappa^{\prime}} U_{a^{\prime}}=}^{=}$ $U_{\kappa}\left(U_{a} U_{\kappa^{\prime}} U_{a}^{-1}\right) U_{a} U_{a^{\prime}}=U_{\kappa^{\prime}+a \cdot{ }_{\kappa}} U_{a \alpha^{\prime}} \in C M(3)$.

Since $\operatorname{det}\left(A_{i j, k l}(a)\right)$ is not 0 , the linear map $\kappa_{i j} \rightarrow \Sigma_{k \leqslant l} A_{i j, k l}(a) \kappa_{k l}$ is an automorphism of $\mathbb{R}^{6}=\left\{\left(\kappa_{11}, \ldots, \kappa_{33}\right)\right\}$. Thus $C M(3)$, a subspace of $\mathbb{R}^{6} \times \mathbb{R}^{9}$, is a semidirect product [12] of T_{6} and $S L(3, \mathbb{R})$.

3. $S L(3, \mathbb{P})$ orbits in \mathbb{R}^{6} and the isotropy subgroups

Since T_{6} is Abelian, its irreducible representations are one dimensional. For $U_{\kappa} \in T_{6}$, the map $x_{Q}: U_{x} \rightarrow \exp \left(\mathrm{i} \Sigma_{i \leqslant j} \kappa_{i j} Q_{i j}^{\prime}\right)$ is the representation labelled by $Q^{\prime}=$ ($Q_{11}^{\prime}, Q_{12}^{\prime}, \ldots, Q_{33}^{\prime}$) $\in \mathbb{R}^{6}$. As usual, we give \mathbb{R}^{6} the standard topology. In the bra-ket formalism [13], if we denote by $\left|Q^{\prime}\right\rangle=\left|Q_{11}^{\prime}, Q_{12}^{\prime}, \ldots, Q_{33}^{\prime}\right\rangle$ the simultaneous eigenstate of $Q_{i j} s$, then

$$
\begin{equation*}
U_{\kappa}\left|Q^{\prime}\right\rangle=x_{Q}\left(U_{\kappa}\right)\left|Q^{\prime}\right\rangle \tag{3.1}
\end{equation*}
$$

and $\left\{\left|Q^{\prime}\right\rangle\right\}$ is the one-dimensional carrier space. If we operate with equation (2.3) on $\left|Q^{\prime}\right\rangle$, then

$$
\begin{equation*}
U_{a} Q_{i j} U_{a}^{-1}\left|Q^{\prime}\right\rangle=Q_{i j}^{n}\left|Q^{\prime}\right\rangle \quad Q_{i j}^{n}=\sum_{k \leqslant l} A_{k l i j}(a) Q_{k l}^{\prime}=\left(a^{-1} \cdot Q^{\prime}\right)_{i j} \tag{3.2}
\end{equation*}
$$

where Q^{\prime} denotes the matrix of the form of equation (2.4) whose components are real numbers. Since $Q_{i j}^{\prime} \mathrm{s}$ are c-numbers,

$$
\begin{equation*}
Q_{y} U_{a}^{-1}\left|Q^{\prime}\right\rangle=Q_{i j}^{*} U_{a}^{\prime}\left|Q^{\prime}\right\rangle \tag{3.3}
\end{equation*}
$$

which implies that $U_{a}^{-i}\left|Q^{\prime}\right\rangle$ is the eigenstate of the quadrupole moments $Q_{i j}$ belonging to the eigenvalues $Q_{i j}^{\prime}$. That is,

$$
\begin{equation*}
U_{a}^{-1}\left|Q^{\prime}\right\rangle=c\left|Q^{\prime \prime}\right\rangle \quad Q^{\prime \prime}=a^{-1} \cdot Q^{\prime} \tag{3.4}
\end{equation*}
$$

where c is a function of $a \in S L(3, \mathbb{R})$ and Q^{\prime}, which will be suitably chosen in section 6 . Equation (3.4) shows that $U_{a} \in S L(3, \mathbb{R})$ connects carrier spaces of the representations of T_{6}. However, not arbitrary $\left|Q^{\prime}\right\rangle$ and $\left|Q^{\prime \prime}\right\rangle$ are connected by some U_{a}.

If we define a relation by

$$
Q^{\prime \prime} \sim Q^{\prime} \quad \text { if } Q^{\prime \prime}=a Q^{\prime} a^{\mathrm{T}}=a \cdot Q \quad \text { for some } a \in S L(3, \mathbb{R})
$$

this relation is an equivalence relation. On each equivalence class, called an orbit, $S L(3, \mathbb{R})$ acts transitively. We shall list below all of these orbits. We hereafter denote the eigenvalues of the quadrupole moments by Q_{y}, so far as no confusion arises. If $\operatorname{det} Q \neq \operatorname{det} Q^{\prime}$ then Q and Q^{\prime} belong to different orbits. Let

$$
\Lambda=\left\{\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \mid \lambda_{i}>0, \lambda_{1} \lambda_{2} \lambda_{3}=1\right\} \subset S L(3, R)
$$

Since $Q \in \mathbb{R}^{6}$ is a real symmetric matrix, there exist $\lambda \in \Lambda$ and $r \in S O$ (3) such that $(r \lambda)^{T} Q r \lambda$ is equal to one of the following matrices:

$$
\begin{equation*}
\pm l \operatorname{diag}(1,1,1) \quad \pm l \operatorname{diag}(-1,-1,1) \tag{3.5}
\end{equation*}
$$

where $l=|\operatorname{det} Q|^{1 / 3} \neq 0$,
$\pm \operatorname{diag}(1,1,0) \quad \operatorname{diag}(1,-1,0) \quad \pm \operatorname{diag}(0,0,1) \quad 0=\operatorname{diag}(0,0,0)$.
That is, any Q is equivalent to one of the above matrices. Furthermore, by Sylvester's law of inertia [14], matrices given in equations (3.5) and (3.6) are non-equivalent,
because they have different signatures. We shall call these matrices the origins of the orbits.

Thus, there are the following $S L(3, \mathbb{R})$ orbits:

$$
\begin{aligned}
& S_{1}^{ \pm}(l)=\left\{Q= \pm l \lambda^{2} r^{\mathrm{T}} \mid r \in S O(3), \lambda \in \Lambda\right\} \quad l>0 \\
& S_{2}^{ \pm}(l)=\left\{Q= \pm l \lambda^{2} \operatorname{diag}(-1,-1,1) r^{\mathrm{T}} \mid r \in S O(3), \lambda \in \Lambda\right\} \quad l>0 \\
& S_{3}^{ \pm}=\left\{Q= \pm r \lambda^{2} \operatorname{diag}(1,1,0) r^{\mathrm{T}} \mid r \in S O(3), \lambda \in \Lambda\right\} \\
& S_{4}=\left\{Q= \pm r \lambda^{2} \operatorname{diag}(1,-1,0) r^{\mathrm{T}} \mid r \in S O(3), \lambda \in \Lambda\right\} \\
& S_{5}^{ \pm}=\left\{Q= \pm r \lambda^{2} \operatorname{diag}(0,0,1) r^{\mathrm{T}} \mid r \in S O(3), \lambda \in \Lambda\right\} \\
& S_{6}=\{0\}
\end{aligned}
$$

It is natural to give all of these orbits the subspace topology of \mathbb{R}^{6}. Although \mathbb{R}^{6} is the union of all of these orbits, since the inversion $Q \rightarrow-Q$ and the scale transformation $Q \rightarrow l Q(l>0)$ are diffeomorphisms, there are only six orbits, $S_{1}^{+}=S_{1}^{+}(1), S_{2}^{+}=S_{2}^{+}(1)$, $S_{3}^{+}, S_{4}, S_{5}^{+}$and S_{6}, which may be mutually not homeomorphic. In fact, since the dimensions of S_{6} and S_{5}^{+}are 0 and 3, respectively, they are not mutually homeomorphic nor homeomorphic with the other orbits whose dimensions are 5.

Let O denote the origin of an $\operatorname{SL}(3, \mathbb{R})$ orbit. The isotropy subgroup of $S L(3, \mathbb{R})$ with respect to the origin O is found by solving the equation $O=a O a^{\mathrm{T}}, a \in S L(3, \mathbb{R})$. We denote the isotropy subgroups of $S_{1}^{+}, S_{2}^{+}, S_{3}^{+}, \mathrm{S}_{4}, S_{5}^{+}$and S_{6} by $K_{1}, K_{2}, K_{3}, K_{4}, K_{5}$ and K_{6}, respectively. Obviously $K_{6}=S L(3, \mathbb{R})$ and $K_{1}=S O(3)$. Let $C_{x}=$ $\operatorname{diag}(1,-1,-1)$, which is the π-rotation about the x-axis. The remaining isotropy subgroups are listed below:

$$
K_{2}=S O(2,1)=S O(2,1)_{0} \cup C_{x} S O(2,1)_{0}
$$

where $S O(2,1)_{0}$ is the three-dimensional proper Lorentz group which is a normal subgroup of $S O(2,1)$.

$$
K_{3}=M(2) \cup C_{x} M(2)
$$

where

$$
M(2)=\left\{\left.\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & a \\
\sin \theta & \cos \theta & b \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, \theta \in \mathbb{R}\right\}
$$

is the two-dimensional Euclidean motion group [15], and is a normal subgroup of K_{3}.

$$
K_{4}=\left\{\left.\left(\begin{array}{ccc}
\cosh \tau & \sinh \tau & a \\
\sinh \tau & \cosh \tau & b \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, \tau \in \mathbb{R}\right\}
$$

which is denoted by $M H(2)$ in [15].

$$
K_{5}=S A(2) \cup C_{x} S A(2)
$$

where

$$
S A(2)=\left\{\left.\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
x & y & 1
\end{array}\right) \right\rvert\, x, y, a, b, c, d \in \mathbb{R}, a d-b c=1\right\}
$$

which is a normal subgroup of K_{5}. It will be appropriate to call $S A(2)$ the 'special twodimensional affine motion group' because it is a semidirect product $T_{2} \times S L(2, \mathbb{R})$ of

$$
S L(2, \mathbb{R})=\left\{\left.\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}, a d-b c=1\right\}
$$

and an Abelian group

$$
T_{2}=\left\{\left.\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
x & y & 1
\end{array}\right) \right\rvert\, x, y \in \mathbb{R}\right\}
$$

Unitary representations of $S O(2.1)_{0}, M(2), M H(2)$ are known [15], and those of $S A(2)$ can be obtained by the method of induced representation explained in section 6. Representations of K_{2}, K_{3}, K_{4} and K_{5} are obtained by the method of induced representation given in [16]. Representations of $K_{6}=S L(3, \mathbb{R})$ are given in [17].

4. Fundamental Groups of $S L(3, \mathbb{R})$ orbits

In order to discriminate the structures of the $S L(3, \mathbb{R})$ orbits, we consider their connectivity. It is known that S_{1}^{+}is homeomorphic [18] to $\mathbb{R}^{5}=\left\{X \in g l(3, \mathbb{R}) \mid X=X^{\top}, \operatorname{Tr} X=\right.$ $0\}$. That is, S_{1}^{+}is simply connected. Let S and O be one of the $S L(3, \mathbb{R})$ orbits and its origin. If $Q \in S$, then $Q=r \lambda^{2} O r^{\mathbf{T}}$, where $\lambda=\left(\mathrm{e}^{\xi_{1}}, \mathrm{e}^{\xi_{2}}, \mathrm{e}^{\xi_{3}}\right), \xi_{i} \in \mathbb{R}$ and $\xi_{1}+\xi_{2}+\xi_{3}=0$. For $t \in[0,1]$, let $\lambda(t)=\left(\mathrm{e}^{t \xi_{1}}, \mathrm{e}^{t \xi_{2}}, \mathrm{e}^{t \xi_{3}}\right)$ and $Q(t)=r \lambda(t)^{2} O r^{\mathrm{T}}$. Then $Q(t), t \in[0,1]$ is a strong deformation retraction [19] of S and $M=\left\{Q=r O r^{\mathrm{T}} \mid r \in S O(3)\right\}$. The fundamental groups of S and M are isomorphic [19].

First we take up S_{s}^{+}. Let

$$
h(\phi)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right) \quad g(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) .
$$

Then any $r \in S O(3)$ is represented by the product $h(\phi) g(\theta) h(\psi)$, where $\phi, \psi \in \mathbb{R} \bmod 2 \pi$ and $\theta \in[0, \pi]$. The strong deformation retract of S_{5}^{+}is $M_{5}=\{r \operatorname{diag}(0,0,1) r \mid r \in S O(3)\}$. If $Q \in M_{5}$, then $Q=h(\phi) g(\theta) \operatorname{diag}(0,0,1) g^{\top}(\theta) h^{\mathrm{T}}(\phi)$. Let $x_{1}=\sin \theta \cos \phi, x_{2}=$ $\sin \theta \sin \phi, x_{3}=\cos \theta$. Then the (i, j) component $q_{1 j}$ of Q is $x_{i} x_{j}$. Therefore, M_{5} is the image set of the map $f: S^{2} \rightarrow \mathbb{R}^{6}$ defined by $f\left(x_{1}, x_{2}, x_{3}\right)_{i j}=x_{i} x_{3}$. According as $q_{11} \neq 0$, $q_{22} \neq 0$ and $q_{33} \neq 0$, we can take $\left(q_{12} / q_{11}, q_{13} / q_{11}\right),\left(q_{12} / q_{22}, q_{23} / q_{22}\right)$ and $\left(q_{13} / q_{33}, q_{23} /\right.$ q_{33}) as local coordinates of M_{5}. Coordinate transformation functions are infinitely many times continuously differentiable.

By the map f, points $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(-x_{1},-x_{2},-x_{3}\right)$ of S^{2} are mapped to the same point of M_{5}. Conversely, $f^{-1}(Q)$ consist of two points. For example, suppose that
$q_{33} \neq 0$ and let $u_{1}=q_{13} / q_{33}$ and $u_{2}=q_{23} / q_{33}$. Then

$$
\begin{equation*}
f^{-1}(Q)=\left\{ \pm\left(\frac{u_{1}}{\sqrt{u_{1}^{2}+u_{2}^{2}+1}}, \frac{u_{2}}{\sqrt{u_{1}^{2}+u_{2}^{2}+1}}, \frac{1}{\sqrt{u_{1}^{2}+u_{2}^{2}+1}}\right)\right\} \tag{4.1}
\end{equation*}
$$

Thus, M_{s} is a set consisting of the pairs of antipodal points of S^{2}. However, in order to infer that M_{5} is the two-dimensional projective space P^{2}, we need to show that the quotient topology [20] of M_{5} induced by f is the same as the given topology. It suffices to show that $f: S^{2} \rightarrow \mathbb{R}^{6}$ is an open map. Let V be a subset of M_{5} such that $U=f^{-1}(V)$ is open. Let $Q \in V$ and $x \in f^{-1}(Q)$. Since U is open, there exist a neighbourhood $E \subset U$ of x. As is seen from equation (4.1), if E is chosen sufficiently small then $x \in E,-x \notin E$, the restriction $f \mid E: E \rightarrow f(E)$ is bijective and $(f \mid E)^{-1}$ is continuous.

Therefore, $\left((f \mid E)^{-1}\right)^{-1}(E)=f(E)$ is open. Then $f(E) \subset V$ is a neighbourhood of $Q \in V$. Thus V is open. The fundamental group of P^{2} is the two-point group. Thus, M_{5} and therefore S_{5}^{+}are doubly connected.

Strong deformation retracts of S_{2}^{+}and S_{3}^{+}are $M_{2}=\left\{r \operatorname{diag}(-1,-1,1) r^{\top} \mid r \in S O(3)\right\}$ and $M_{3}=\left\{r \operatorname{diag}(1,1,0) r{ }^{\mathbf{T}} \mid r \in S O(3)\right\}$, respectively. Because $\operatorname{diag}(-1-1,1)=$ $-I+2 \operatorname{diag}(0,0,1)$ and $\operatorname{diag}(1,1,0)=I-\operatorname{diag}(0,0,1), M_{2}$ and M_{3} are homeomorphic to P^{2}. Thus, all of S_{2}^{+}, S_{3}^{+}and S_{5}^{+}are doubly connected.

The structure of S_{4} is more complicated. Let $f: S O(3) \rightarrow \mathbb{R}^{6}$ be the map defined by $f(r)=r \operatorname{diag}(1,-1,0) r^{\mathrm{T}}$. Then $M_{4}=f(S O(3))$. Let $D_{2}=\left\{I, C_{x}, C_{y}, C_{z}\right\}$ be the dihedral group consisting of the identity and π-rotations about the x, y, z axes. If $C \in D_{2}$ then $f(r C)=f(r)$. Conversely, if $f(r C)=f(r)$ for $C \in S O(3)$ then $C \in D_{2}$. This is shown by solving the equation $C \operatorname{diag}(1,-1,0) C^{\boldsymbol{\top}}=\operatorname{diag}(1,-1,0), C \in S O(3)$. Thus, M_{4} is the quotient set $S O(3) / D_{2}$. First we shall show that M_{4} is a three-dimensional manifold embedded in \mathbb{R}^{6}. Let $\Delta_{i j}$ denote the (i, j) cofactor of det Q. Since the eigenvalues of $Q \in M_{4}$ are $1,-1,0$,

$$
h_{1}(Q)=\operatorname{Tr} Q=0 \quad h_{2}(Q)=\sum_{t=1}^{3} \Delta_{t}+1=0 \quad h_{3}(Q)=\operatorname{det} Q=0
$$

If we define $h: \mathbb{R}^{6} \rightarrow \mathbb{R}^{3}$ by $h(Q)=\left(h_{1}(Q), h_{2}(Q), h_{3}(Q)\right)$, then $M_{4}=h^{-1}(0)$. The derivative of h at Q is

$$
\mathrm{d} h_{Q}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 1 \\
-q_{11} & -2 q_{12} & -2 q_{13} & -q_{22} & -2 q_{23} & -q_{33} \\
\Delta_{11} & 2 \Delta_{12} & 2 \Delta_{13} & \Delta_{22} & 2 \Delta_{23} & \Delta_{33}
\end{array}\right)
$$

where h_{1}, h_{2}, h_{3} and $q_{11}, q_{22}, \ldots, q_{33}$ are arranged vertically and horizontally, respectively. By elementary linear algebra, the rank of $\mathrm{d} h_{Q}$ is shown to be 3 . Therefore, M_{4} is a three-dimensional subspace [21] of \mathbb{R}^{6}, and three of the $q_{11}, q_{22}, \ldots, q_{33}$ serve as local coordinates.

Although we do not write down the lengthy algebraic expressions of $f^{-1}(Q)$, it is shown that if $r \in f^{-1}(Q)$, then $f^{-1}(Q)=\left\{r, r C_{x}, r C_{y}, r C_{z}\right\}$. In the same way as above, f can be shown to be an open map, and consequently $S O(3) / D_{2}$ in the quotient topology is homeomorphic to M_{4}.

Let Ad: $S U(2) \rightarrow S O(3)$ be the adjoint representation [22] of $S U(2)$. Let $p=f$. Ad. Then $p: S U(2) \rightarrow M_{4}$ is shown to be an open and covering map [23]. Let $\widetilde{D}_{2}=\operatorname{Ad}^{-1}\left(D_{2}\right)$, then

$$
\tilde{D}_{2}=\left\{ \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \pm\left(\begin{array}{cc}
0 & \mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \pm\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \pm\left(\begin{array}{cc}
\mathrm{i} & 0 \\
0 & -\mathrm{i}
\end{array}\right)\right\}
$$

Since $M_{4} \cong S O(3) / D_{2} \cong S U(2) / \tilde{D}_{2}$, and $S U(2)$ is simply connected, the fundamental group of M_{4} is isomorphic [24] \dagger to \tilde{D}_{2}. Thus M_{4}, and therefore S_{4}, is an eight-fold connected space. In conclusion, except for the possibility that S_{2}^{+}and S_{3}^{+}are homeomorphic, all orbits $S_{1}^{+}, S_{2}^{+}, S_{3}^{+}, S_{4}, S_{5}^{+}$are not mutually homeomorphic.

5. Measures on $S L(3, \mathbb{R})$ orbits

Suppose that S is a k-dimensional surface in \mathbb{R}^{6} and $\left(\alpha_{1}, \ldots, \alpha_{k}\right) \rightarrow Q \in S$ is its parametrization (differentiable surjection). Set $x_{1}=Q_{11}, x_{2}=\sqrt{2} Q_{12}, x_{3}=\sqrt{2} Q_{13}, x_{4}=Q_{22}$, $x_{5}=\sqrt{2} Q_{23}$ and $x_{6}=Q_{33}$. Then the measure on S induced by the Euclidean norm $\|Q\|=\sqrt{\operatorname{Tr} Q^{2}}=\sqrt{\sum_{i=1}^{6} x_{i}^{2}}$, is

$$
\begin{equation*}
\mathrm{d} \mu(Q)=\sqrt{\sum_{i_{1}<\ldots<i_{k}}\left|\frac{\partial\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)}{\partial\left(\alpha_{1}, \ldots, \alpha_{k}\right)}\right|^{2}} \mathrm{~d} \alpha_{1} \ldots \mathrm{~d} \alpha_{k} \tag{5.1}
\end{equation*}
$$

With the aid of this formula, we can calculate the measures on any $S L(3, \mathbb{R})$ orbit. We shall suppress numeral factors of the measures which are absorbed in the normalization of wavefunctions.

Let $r(\phi, \theta, \psi)=h(\phi) g(\theta) h(\psi) \in S O(3)$. If $Q \in S_{5}^{+}$, then $Q(\phi, \theta, v)=$ $r(\phi, \theta, \psi) \operatorname{diag}(0,0, v) r^{\top}(\phi, \theta, \psi)=h(\phi) g(\theta) \operatorname{diag}(0,0, v) g^{\top}(\theta) h^{\top}(\phi)$, where $v \in \mathbb{R}^{+}$. We can take v, θ, ϕ as parameters of the orbit S_{s}^{+}. By equation (5.1),

$$
\begin{equation*}
\mathrm{d} \mu_{5}(Q)=v^{2} \mathrm{~d} v \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \tag{5.2}
\end{equation*}
$$

If $Q \in S_{3}^{+}$or S^{4}, then
$Q\left(\phi, \theta, \psi, \lambda_{1}, \lambda_{2}\right)=r(\phi, \theta, \psi) \operatorname{diag}\left(\lambda_{1}, \pm \lambda_{2}, 0\right) r^{\mathrm{T}}(\phi, \theta, \psi) \quad \lambda_{1}, \lambda_{2} \in \mathbb{R}^{+}$.
According as $Q \in S_{3}^{+}$or $Q \in S_{4}$, equation (5.1) implies that

$$
\begin{align*}
& \mathrm{d} \mu_{3}(Q)=\lambda_{1} \lambda_{2}\left|\lambda_{1}-\lambda_{2}\right| \mathrm{d} \lambda_{\mathrm{t}} \mathrm{~d} \lambda_{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} \psi \tag{5.3}\\
& \mathrm{~d} \mu_{4}(Q)=\lambda_{1} \lambda_{2}\left(\lambda_{1}+\lambda_{2}\right) \mathrm{d} \lambda_{1} \mathrm{~d} \lambda_{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} \psi \tag{5.4}
\end{align*}
$$

The measures (5.2), (5.3) and (5.4) are quasi-invariant [25].
If $Q \in S_{1}^{+}$or $Q \in S_{2}^{+}$, then

$$
\begin{aligned}
& Q\left(\phi, \theta, \psi, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=r(\phi, \theta, \psi) \operatorname{diag}\left(\pm \lambda_{1}, \pm \lambda_{2}, \lambda_{3}\right) r^{\mathbf{T}}(\phi, \theta, \psi) \\
& \lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}^{+} \quad \lambda_{1} \lambda_{2} \lambda_{3}=1
\end{aligned}
$$

and $\operatorname{Tr} Q^{-2}=\Sigma_{1=1}^{3} 1 / \lambda_{2}^{2}$. If we introduce two independent variables $\varepsilon_{0}, \varepsilon_{2} \in \mathbb{R}$ such that $\lambda_{1}=\exp \left[2\left(\varepsilon_{2} / \sqrt{2}-\varepsilon_{0} / \sqrt{6}\right)\right], \quad \lambda_{2}=\exp \left[2\left(-\varepsilon_{2} / \sqrt{2}-\varepsilon_{0} / \sqrt{6}\right)\right], \quad \lambda_{3}=\exp \left(2 \sqrt{2 / 3} \varepsilon_{0}\right)$, then, according as $Q \in S_{1}^{+}$or $Q \in S_{2}^{+}$, quasi-invariant measures calculated from formula (5.1) are

$$
\begin{aligned}
& \mathrm{d} \mu_{1}(Q)=\sqrt{\operatorname{Tr} Q^{-2}}\left|\lambda_{1}-\lambda_{2}\right|\left|\lambda_{2}-\lambda_{3}\right|\left|\lambda_{3}-\lambda_{1}\right| \mathrm{d} \varepsilon_{0} \mathrm{~d} \varepsilon_{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} \psi \\
& \mathrm{~d} \mu_{2}(Q)=\sqrt{\operatorname{Tr} Q^{-2}}\left|\lambda_{1}-\lambda_{2}\right|\left(\lambda_{2}+\lambda_{3}\right)\left(\lambda_{3}+\lambda_{1}\right) \mathrm{d} \varepsilon_{0} \mathrm{~d} \varepsilon_{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} \psi
\end{aligned}
$$

However, on S_{1}^{+}and S_{2}^{+}, there exist invariant measures induced from the measure $\mathrm{d} V=\mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{6}$ of \mathbb{R}^{6}. The group $G L^{+}(3, \mathbb{R})$ is the direct product $\mathbb{R}^{+} \times S L(3, \mathbb{R})$,

[^0]and $V_{1}^{+}=U_{1>0} S_{i}^{+}(l)$, where $i=1,2$, are $G L^{+}(3, \mathbb{R})$ orbits in \mathbb{R}^{6}. On V_{1}^{+}and V_{2}^{+}, the measure $\mathrm{d} V=\mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{6}$ takes the form
\[

$$
\begin{aligned}
& \mathrm{d} v_{1}^{+}(Q)=l^{5}\left|\lambda_{1}-\lambda_{2}\right|\left|\lambda_{2}-\lambda_{3}\right|\left|\lambda_{3}-\lambda_{1}\right| \mathrm{d} l \mathrm{~d} \varepsilon_{0} \mathrm{~d} \varepsilon_{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} \psi \\
& \mathrm{~d} v_{2}^{+}(Q)=l^{5}\left|\lambda_{1}-\lambda_{2}\right|\left(\lambda_{2}+\lambda_{3}\right)\left(\lambda_{3}+\lambda_{1}\right) \mathrm{d} l \mathrm{~d} \varepsilon_{0} \mathrm{~d} \varepsilon_{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} \psi
\end{aligned}
$$
\]

respectively. These measures are invariant under the action of $S L(3, \mathbb{P})$. This is because. if $Q^{\prime}=a Q a^{\mathrm{T}}$ for $a \in S L(3, \mathbb{R})$ then $\partial\left(Q_{11}^{\prime}, \ldots, Q_{33}^{\prime}\right) / \partial\left(Q_{11}, \ldots, Q_{33}\right)=(\operatorname{det} a)^{4}=1$. Since $l^{3}=\operatorname{det} Q$ and $\operatorname{det} Q$ is invariant under the action of $S L(3, \mathbb{R}), \mathrm{d} \mu_{i}(Q)=$ $\mathrm{d} v_{i}^{+}(Q) / \mathrm{d} \|_{l=1}, \mathrm{i}=1,2$, are invariant measures on S_{1}^{+}and S_{2}^{+}. They are of the form

$$
\begin{align*}
& \mathrm{d} \mu_{1}(Q)=\left|\lambda_{1}-\lambda_{2}\right|\left|\lambda_{2}-\lambda_{3}\right|\left|\lambda_{3}-\lambda_{1}\right| \mathrm{d} \varepsilon_{0} \mathrm{~d} \varepsilon_{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} \psi \tag{5.5}\\
& \mathrm{~d} \mu_{2}(Q)=\left|\lambda_{1}-\lambda_{2}\right|\left(\lambda_{2}+\lambda_{3}\right)\left(\lambda_{3}+\lambda_{1}\right) \mathrm{d} \varepsilon_{0} \mathrm{~d} \varepsilon_{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} \psi \tag{5.6}
\end{align*}
$$

6. Induced unitary representations of $C M(3)$

The method of constructing irreducible unitary representations of such a semidirect product group as $C M(3)$ is well known [26]. Let S be one of the $S L(3, \mathbb{R})$ orbits whose origin is O, and K is the isotropy subgroup. Then S is diffeomorphic [27] to $S L(3, \mathbb{R}) /$ K. Let H^{L} be the carrier space of an irreducible unitary representation of K labelled by L and $\{|\tau\rangle\}$ be an orthonormal basis for H^{L}. Let $L_{k}: H^{L} \rightarrow H^{L}$ be the representation of $k \in K$. Then

$$
\begin{equation*}
L_{k}|\tau\rangle=\sum_{\tau^{\prime}} \mathscr{D}_{\tau^{\prime} \tau}(k)\left|\tau^{\prime}\right\rangle \tag{6.1}
\end{equation*}
$$

where $\left(\mathscr{D}_{\tau^{\prime} \tau}(k)\right)$ is the representation matrix.
For $Q \in S$, choose an element $g_{Q} \in S L(3, \mathbb{R})$ such that $Q=g_{Q} \cdot O$. The way of choosing g_{Q} is not unique. However, it suffices that the collection $B_{S}=\left\{g_{Q} \mid Q \in S\right\}$ becomes a Borel set [28,29] in $S L(3, \mathbb{R})$. Since $S L(3, \mathbb{R}) \in \mathbb{R}^{9}$ is locally compact (cf [19], p 186, corollary 8.3), it is equipped with the σ-ring consisting of Borel sets, and for each orbit S we can concretely choose g_{Q} so that B_{S} becomes a Borel set. The map $Q \rightarrow g_{Q}$ is, in general, neither differentiable nor continuous. Given $g \in S L(3, \mathbb{R})$, let $Q=g \cdot O$ and $g_{Q} \in B_{S}$ be the element such that $Q=g_{Q} \cdot O$, then $k_{g}=g_{Q}^{-1} g$ belongs to K. The decomposition $g=g_{Q} k_{g}$ is called the Mackey decomposition [29]. We denote the map $g \rightarrow k_{g}$ by σ. Since the map $Q \rightarrow g_{Q}$ is not continuous, neither is the map $\sigma: g \rightarrow k_{g}$.

Let μ be the invariant or a quasi-invariant measure on S. If we choose $c=\sqrt{\mathrm{d} \mu\left(g^{-1} Q^{\prime}\right) / \mathrm{d} \mu\left(Q^{\prime}\right)}$ in equation (3.4), then it holds that the completeness relation

$$
1=\int_{s}\left|Q^{\prime}\right\rangle \mathrm{d} \mu\left(Q^{\prime}\right)\left\langle Q^{\prime}\right|=\int_{s}\left|Q^{\prime \prime}\right\rangle \mathrm{d} \mu\left(Q^{\prime \prime}\right)\left\langle Q^{\prime \prime}\right|
$$

Let $\mathscr{L}^{2}\left(S, \mu, H^{L}\right)$ be the set consisting of square integrable functions $f: S \rightarrow H^{L}$. That is, if $f \in \mathscr{L}^{2}\left(S, \mu, H^{L}\right)$,

$$
\begin{aligned}
& f(Q)=\sum_{\tau} f_{\tau}(Q)|\tau\rangle \\
& \langle f \mid f\rangle=\int_{S} \sum_{\tau}\left|f_{\tau}(Q)\right|^{2} \mathrm{~d} \mu(Q)<+\infty
\end{aligned}
$$

For $Q \in S$ let $Q=g_{Q} \cdot O$, where $g_{Q} \in B_{S}$. Given $g_{0} \in S L(3, \mathbb{R})$ let $Q^{\prime}=g_{0}^{-1} \cdot Q, g_{1}=g_{0}^{-1} g_{Q}$ and $g_{1}=g_{Q} k_{g 1}$ be the Mackey decomposition of g_{1}. Now, for $U_{80} \in S L(3, \mathbb{R})$, define a linear map $\rho\left(U_{80}\right): \mathscr{L}^{2}\left(S, \mu, H^{L}\right) \rightarrow \mathscr{L}^{2}\left(S, \mu, H^{L}\right)$ by

$$
\begin{align*}
\left(\rho\left(U_{g 0}\right) f\right)(Q) & =L_{k_{g 1}}^{-1}\left(\sum_{\tau}\langle Q| U_{g 0}\left|f_{\tau}\right\rangle\right)|\tau\rangle \\
& =\sqrt{\frac{\mathrm{d} \mu\left(g_{0}^{-1} \cdot Q\right)}{\mathrm{d} \mu(Q)}} L_{k_{\varepsilon 1}}^{-1}\left(\sum_{\tau} f_{\tau}\left(g_{0}^{-1} \cdot Q\right)|\tau\rangle\right) \\
& =\sqrt{\frac{\mathrm{d} \mu\left(g_{0}^{-1} \cdot Q\right)}{\mathrm{d} \mu(Q)}} \sum_{\tau, \tau^{\prime}} \mathscr{D}\left(k_{g 1}\right)_{\tau \tau} f_{\tau^{\prime}}\left(g_{0}^{-1} \cdot Q\right)|\tau\rangle \tag{6.2}
\end{align*}
$$

Then $\rho\left(U_{g_{0}}\right)$ is a strongly continuous unitary representation of $U_{g_{0}}$. Note that $g \rightarrow k_{g}$ is not continuous and therefore $g \rightarrow \mathscr{V}_{\tau^{\prime}}\left(k_{g}\right)$ is not continuous, but $U_{g 0} \rightarrow \rho\left(U_{g_{0}}\right)$ is continuous. That is, even if $g \rightarrow \mathscr{D}_{\tau t}\left(k_{g}\right)$ is not continuous, if $\left\|g_{0}-\tilde{g}_{0}\right\|$ is sufficiently small $\left|\mathscr{V}_{\tau \tau^{\prime}}\left(k_{z_{1}}\right)-\mathscr{D}_{\tau \tau^{\prime}}\left(k_{\tilde{g}_{1}}\right)\right|$ becomes arbitrary small for $k_{g 1}=\sigma\left(g_{0}^{-1} g_{Q}\right)$ and $k_{g_{1}}=\sigma\left(\tilde{g}_{0}^{-1} g_{Q}\right)$. Finally, for $U_{\kappa} U_{g} \in C M(3)$ if we define

$$
\rho\left(U_{\kappa} U_{g}\right): \mathscr{L}^{2}\left(S, \mu, H^{L}\right) \rightarrow \mathscr{L}^{2}\left(S, \mu, H^{L}\right)
$$

by

$$
\left(\rho\left(U_{\kappa} U_{g}\right) f\right)(Q)=\chi_{Q}\left(U_{\kappa}\right)\left(\rho\left(U_{g}\right) f\right)(Q)
$$

then $U_{x} U_{g} \rightarrow \rho\left(U_{\kappa} U_{g}\right)$ is an irreducible unitary representation of $C M(3)$.
If L is the trivial representation of K, then equation (6.2) becomes

$$
\begin{equation*}
\left(\rho\left(U_{g_{0}}\right) f\right)(Q)=\sqrt{\frac{\mathrm{d} \mu\left(g_{0}^{-1} \cdot Q\right)}{\mathrm{d} \mu(Q)}} f\left(g_{0}^{-1} \cdot Q\right) \tag{6.3}
\end{equation*}
$$

and $\mathscr{L}^{2}\left(\mu, S, H^{L}\right) \quad$ becomes $\quad \mathscr{L}^{2}(S, \mu)=\left\{f:\left.S \rightarrow \mathbb{C}\left|\int_{S}\right| f(Q)\right|^{2} \mathrm{~d} \mu(Q)<+\infty\right\}$. As $\int_{S} \Sigma_{\tau}\left|f_{\tau}(Q)\right|^{2} \mathrm{~d} \mu(Q)<+\infty$, obviously $f_{\tau} \in \mathscr{L}^{2}(S, \mu)$. Therefore, if $\left\{u_{n}(Q)\right\}$ is a basis for $\mathscr{L}^{2}(S, \mu)$, then $\left\{u_{n}(Q) \otimes|\tau\rangle\right\}$ serves as a basis for $\mathscr{L}^{2}\left(S, \mu, H^{L}\right)$.

7. Basis for $\mathscr{L}^{2}(S, \mu)$

Let us introduce some basis for $\mathscr{L}^{2}(S, \mu)$ by considering the structure of S. First we note that if $f: X \rightarrow Y$ is a homeomorphism, μ_{X} and μ_{Y} are quasi-invariant measures on X and Y, respectively and $\left\{\phi_{n}(x)\right\}$ is a basis for $\mathscr{L}^{2}\left(X, \mu_{X}\right)$, then the collection of $\psi_{n}(y)$ defined by

$$
\begin{aligned}
& \psi_{n}(y)=\sqrt{\frac{\mathrm{d} \mu_{X}(x)}{\mathrm{d} \mu_{y}(y)}}\left(\phi \cdot f^{-1}\right)(y)=\sqrt{\frac{\mathrm{d} \mu_{X}(x)}{\mathrm{d} \mu_{Y}(y)}} \phi_{n}(x) \\
& y=f(x) \in Y \quad x=f^{-1}(y) \in X .
\end{aligned}
$$

serves as a basis for $\mathscr{L}^{2}\left(Y, \mu_{Y}\right)$. Also, we shall make use of the fact that if $g: X \rightarrow Y$ is a surjection and $h: X \rightarrow \mathbb{C}$ is constant on the inverse image $g^{-1}(y)$ of $y \in Y$, then h can be regarded as a function on Y.

7.1. Basis for $\mathscr{L} 2\left(S_{s}^{+}, \mu_{s}\right)$

If $Q \in S_{5}^{+}$, then $Q=v \tilde{Q}$. where $v \in \mathbb{R}^{+}$and $\tilde{Q} \in M_{5} \cong P^{2}$. The map $(v, \tilde{Q}) \rightarrow v \tilde{Q} \in S_{5}^{+}$is continuous. Also, the inverse of the map is continuous. Because, for $Q \in S_{S}^{+}, v=\operatorname{Tr} Q$ and $\tilde{Q}=Q / v$ are continuous. Thus $S_{5}^{+} \cong \mathbb{R}^{+} \times P^{2}$. Let $\mathrm{d} \mu_{R^{+}}(v)=\mathrm{e}^{-v} \mathrm{~d} v$. Then Laguerre polynomials [30] $L_{n}(v)=\mathrm{e}^{v} \mathrm{~d}^{n}\left(\mathrm{e}^{-v} v^{n}\right) / \mathrm{d} v^{n}$, satisfying the orthogonality

$$
\int_{0}^{\infty} L_{n}(v) L_{n}, \mathrm{~d} \mu_{\mathbb{B}^{+}}(v)=(n!)^{2} \delta_{n n^{\prime}}
$$

are complete in $\mathscr{L}^{2}\left(\mathbb{R}^{+}, \mu_{\mathbb{R}^{+}}\right)$. Spherical harmonics $Y_{m m}(\theta, \phi)$ are complete in $\mathscr{L}^{2}\left(S^{2}, \mu_{S^{2}}\right)$, where $\mathrm{d} \mu_{s^{2}}(\theta, \phi)=\sin \theta \mathrm{d} \theta \mathrm{d} \phi$. Functions on S^{2} which take the same value on a pair of antipodal points can be regarded as functions on P^{2} (cf equation (4.1)). As $Y_{l m}(\pi-\theta, \phi+\pi)=(-1)^{\prime} Y_{l m}(\theta, \phi)$, the set $\left\{Y_{l m} \mid l\right.$ even $\}$ is complete in $\mathscr{L}^{2}\left(P^{2}, \mu_{s^{2}}\right)$. The difference of the measures $\mathrm{d} \mu_{5}(Q)$ and $\mathrm{d} \mu_{\mathbb{R}^{+}}(v) \mathrm{d} \mu_{s^{2}}(\theta, \phi)$ is compensated by merely multiplying $L_{n}(v) Y_{l m}(\theta, \phi)$ by $\mathrm{e}^{-v / 2} / v$. Thus,

$$
\left\{\left(\mathrm{e}^{-v / 2} / v\right) L_{n}(v) Y_{m m}(\theta, \phi) \mid n \backsim \mathbb{N}, l \text { even }\right\}
$$

is an orthogonal basis for $\mathscr{L}^{2}\left(S_{5}^{+}, \mu_{5}\right)$.

7.2. Basis for $\mathscr{L}^{2}\left(S_{3}^{+}, \mu_{3}\right)$

If $Q \in S_{3}^{+}$, then $Q=r \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, 0\right) r^{\mathbf{T}}$, where $r \in S O(3)$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}^{+}$. Let $v=\sqrt{\lambda_{1} \lambda_{2}}$ and $\mathrm{e}^{\varepsilon}=\sqrt{\lambda_{1} / \lambda_{2}}$, then $v \in \mathbb{R}^{+}, \varepsilon \in \mathbb{R}$ and $Q=v r \operatorname{diag}\left(\mathrm{e}^{\varepsilon}, \mathrm{e}^{-\epsilon}, 0\right) r^{T}$. The orbit S_{3}^{+}is the Cartesian product of \mathbb{R}^{+}and $\tilde{S}_{3}=\left\{r \operatorname{diag}\left(\mathrm{e}^{\varepsilon}, \mathrm{e}^{-\varepsilon}, 0\right) r^{\mathrm{T}} \mid \varepsilon \in \mathbb{R}, r \in S O(3)\right\}$. In fact, if $Q \in S_{3}^{+}$, then $v=\sqrt{\left[(\operatorname{Tr} Q)^{2}-\operatorname{Tr} Q^{2}\right] / 2}$ and $\tilde{Q}=Q / v$ are continuous, and the inverse $(v, \tilde{Q}) \rightarrow v \tilde{Q}$ is continuous. Let

$$
S O(2)=\left\{\left.h(\phi)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, \phi \in \mathbb{R}\right\} .
$$

Since

$$
S O(3)=\{h(\phi) g(\theta) h(\psi) \mid h(\phi), h(\psi) \in S O(2), \theta \in[0, \pi]\}
$$

and $\left\{\operatorname{diag}\left(e^{\varepsilon}, \mathrm{e}^{-\varepsilon}, 0\right) \mid \varepsilon \in \mathbb{R}\right\} \cong \mathbb{R}, \tilde{S}_{3}$ is the image set of the map

$$
\tilde{f}_{3}: S O(2) \times[0, \pi] \times S O(2) \times \mathbb{R} \rightarrow \mathbb{R}^{6}
$$

defined by

$$
\tilde{f}_{3}(h(\phi), \theta, h(\psi), \varepsilon)=h(\phi) g(\theta) h(\psi) \operatorname{diag}\left(\mathrm{e}^{\varepsilon}, \mathrm{e}^{-\varepsilon}, 0\right) h^{\mathrm{T}}(\psi) g^{\mathrm{T}}(\theta) h^{\mathrm{T}}(\phi)
$$

However, there exists a more convenient parametrization of $Q \in \widetilde{S}_{3}$. Let $\tilde{X}_{3}=$ $\left\{h \operatorname{diag}\left(\mathrm{e}^{\varepsilon}, \mathrm{e}^{-\varepsilon}, 0\right) h^{\mathrm{T}} \mid h \in S O(2)\right\} \subset \tilde{S}_{3}$. Define a map $\tilde{g}_{3}: S O(2) \times[0, \pi] \times \tilde{X}_{3} \rightarrow \mathbb{R}^{6}$ by $\tilde{g}_{3}(h(\phi), \theta, P)=h(\phi) g(\theta) P g^{\mathrm{T}}(\theta) h^{\mathrm{T}}(\phi)$, where $P=h(\psi) \operatorname{diag}\left(\mathrm{e}^{\varepsilon}, \mathrm{e}^{-\varepsilon}, 0\right) h^{\mathrm{T}}(\psi) \in \tilde{X}_{3}$, then $\tilde{f}_{3}^{\prime}(h(\phi), \theta, h(\psi), \varepsilon)=\tilde{g}_{3}(h(\phi), \theta, P)$ and $\tilde{S}_{3}=\tilde{g}_{3}\left(S O(2) \times[0, \pi] \times \tilde{X}_{3}\right)$. Since

$$
\begin{aligned}
& \tilde{g}_{3}(h(\phi), 0, P)=(h(\phi) h(\psi)) \operatorname{diag}\left(\mathrm{e}^{\varepsilon}, \mathrm{e}^{-\varepsilon}, 0\right)(h(\phi) h(\psi))^{T} \in \tilde{X}_{3} \\
& \tilde{g}_{3}(h(\phi), \pi, P)=\left(h(\phi) h^{-1}(\psi)\right) \operatorname{diag}\left(\mathrm{e}^{\varepsilon}, \mathrm{e}^{-\varepsilon}, 0\right)\left(\mathrm{h}(\phi) h^{-1}(\psi)\right)^{\mathrm{T}} \in \tilde{X}_{3}
\end{aligned}
$$

$S O(2) \times\{0\} \times \tilde{X}_{3}$ and $S O(2) \times\{\pi\} \times \tilde{X}_{3}$ are projected on to \tilde{X}_{3}. If $\theta \in(0, \pi)$, then
$\tilde{g}_{3}(h(\phi), 0, P)$ does not belong to \tilde{X}_{3}. We shall consider functions from $S O(2) \times[0, \pi] \times \tilde{X}_{3}$ to \mathbb{C}, which are constant on $\tilde{g}_{3}^{-1}(Q)$.

First we show that $\tilde{X}_{3} \cong \mathbb{R}^{2}$. Let $p_{j j}$ denote the (i, j) component of $P=$ $h(\psi) \operatorname{diag}\left(e^{\varepsilon}, e^{-\varepsilon}, 0\right) h^{\mathrm{T}}(\psi) \in \tilde{X}_{3}$. Then

$$
\begin{align*}
& u=p_{11}+p_{22}=\left(\mathrm{e}^{\varepsilon}+\mathrm{e}^{-\varepsilon}\right) \quad v=p_{11}-p_{22}=\left(\mathrm{e}^{\varepsilon}-\mathrm{e}^{-\varepsilon}\right) \cos 2 \psi \\
& w^{\prime}=2 p_{12}=\left(\mathrm{e}^{\varepsilon}-\mathrm{e}^{-\varepsilon}\right) \sin 2 \psi \tag{7.1}
\end{align*}
$$

and the other components of P are 0 . Since $u^{2}-\left(v^{2}+w^{2}\right)=4$ and $u>0, \tilde{X}_{3}$ is a sheet of the hyperboloid of two sheets. The projection $(u, v, w) \rightarrow(v, w)$ and its inverse $(v, w) \rightarrow\left(\sqrt{4+v^{2}+w^{2}}, v, w\right)$ are differentiable, and consequently $\widetilde{X}_{3} \cong \mathbb{R}^{2}$.

Let $H_{n}(u)$ denote a Hermite polynomial [31]. Then

$$
\left\{\exp \left[-\left(v^{2}+w^{2}\right) / 2\right] H_{m}(v) H_{n}(w) \mid n, m=0,1,2, \ldots\right\}
$$

is complete in $\mathscr{L}^{2}\left(\mathbb{R}^{2}, \mu_{\mathbb{R}^{2}}\right)$, where $\mathrm{d} \mu_{\mathbb{R}^{2}}(v, w)=\mathrm{d} v \mathrm{~d} w$. However, it is more convenient to adopt their linear combinations

$$
\begin{aligned}
\sum c_{m n} H_{m}(v) H_{n}(w) & =\exp \left[-\left(v^{2}+w^{2}\right) / 2\right] L_{j}^{[k]}\left(v^{2}+w^{2}\right)\left(v+\mathrm{i} w^{\prime}\right)^{k} & \text { if } k \geqslant 0 \\
& =\exp \left[-\left(v^{2}+w^{2}\right) / 2\right] L_{j}^{\mid k]}\left(v^{2}+w^{2}\right)(v-\mathrm{i} w)^{-k} & \text { if } k<0
\end{aligned}
$$

where $L_{j}^{|k|}$ is the Laguerre polynomial [30], k an integer and j a non-negative integer. Substituting $\rho \cos 2 \psi$ and $\rho \sin 2 \psi$, where $\rho=\left(\mathrm{e}^{\varepsilon}-\mathrm{e}^{-\tau}\right)$, for v and w respectively, we have basis functions

$$
\begin{equation*}
\phi_{j, k}(\rho, \psi)=\mathrm{e}^{-\rho^{2} / 2} \rho^{|k|} L_{j}^{|k|}\left(\rho^{2}\right) \mathrm{e}^{2, k \psi} \tag{7.2}
\end{equation*}
$$

well defined on \tilde{X}_{3}. The function $\phi_{j, k}(\rho, \psi)$ is invariant under the transformation $(\rho, \psi) \rightarrow(-\rho, \psi \pm \pi / 2)$. This invariance arises from $h(\psi) \operatorname{diag}\left(\mathrm{e}^{\varepsilon}, \mathrm{e}^{-\varepsilon}, 0\right) h^{\top}(\psi)=$ $h(\psi \pm \pi / 2) \operatorname{diag}\left(\mathrm{e}^{-\varepsilon}, \mathrm{e}^{\varepsilon}, 0\right) h^{\mathrm{T}}(\psi \pm \pi / 2)$. In this parametrization of (v, w) by (ρ, ψ) any function on \tilde{X}_{3} must satisfy the invariance. Therefore,

$$
\begin{aligned}
\int_{-\infty}^{0} \rho \mathrm{~d} \rho \int_{0}^{2 \pi} \mathrm{~d} \psi F(\rho, \psi) & =\int_{0}^{\infty} \rho \mathrm{d} \rho \int_{ \pm \pi / 2}^{2 \pi \pm \pi / 2} \mathrm{~d} \psi F(\rho, \psi) \\
& =\int_{0}^{\infty} \rho \mathrm{d} \rho \int_{0}^{2 \pi} \mathrm{~d} \psi F(\rho, \psi)
\end{aligned}
$$

and consequently, in equation (7.2), we may restrict the domain of ρ to $[0,-\infty)$.
For $h(\phi) \in S O(2)$, let $z_{1}=\mathrm{e}^{\mathrm{i} \phi}$. Then the set $\left\{z_{1}^{M} \mathrm{~d}_{M K}^{J}(\theta) \mid J=0,1, \ldots, M=-J, \ldots, J\right\}$, where K is arbitrarily chosen for each J, is complete in the space of square integrable functions on $S O(2) \times[0, \pi]$. Therefore, $\left\{\phi_{, k}(\rho, \psi) z_{1}^{M} \mathrm{~d}_{M K}^{J}(\theta)\right\}$ is complete in the space of square integrable functions on $S O(2) \times[0, \pi] \times \tilde{X}_{3}$.

Now, if $\theta \in(0, \pi)$ and $Q=\tilde{g}_{3}(h(\phi), \theta, P)$ then $\tilde{g}_{3}^{-1}(Q)$ consists of two points $(h(\phi), \theta, P)$ and $(h(\phi+\pi), \pi-\theta, g(\pi) P g(\pi))$. Since $g(\pi) h \operatorname{diag}\left(\mathrm{e}^{\varepsilon}, \mathrm{e}^{-\varepsilon}, 0\right) h^{\top} g(\pi)=$ $h^{\top} \operatorname{diag}\left(\mathrm{e}^{\varepsilon}, \mathrm{e}^{-\varepsilon}, 0\right) h$, if the value of function $\phi_{j, k}$ at P is $\phi_{j, k}(\rho, \psi)$, its value at $g(\pi) P g(\pi)$ is $\phi_{j, k}(\rho,-\psi)$. Also, $\mathrm{e}^{\mathrm{i} M(\phi+\pi)} \mathrm{d}_{M K}^{J}(\pi-\theta)=(-1)^{J} \mathrm{e}^{\mathrm{i} M \phi} \mathrm{~d}_{M,-K}^{J}(\theta)$. Therefore,

$$
\begin{equation*}
\psi(Q)=\mathrm{e}^{-\rho^{2} / 2} \rho^{|k|} L_{j}^{|k|}\left(\rho^{2}\right) \mathrm{e}^{\mathrm{i} M \phi}\left(\mathrm{~d}_{M K}^{J}(\theta) \mathrm{e}^{2 i k \psi}+(-1)^{J} \mathrm{~d}_{M,-K}^{J}(\theta) \mathrm{e}^{-2 \downarrow k \psi}\right) \tag{7.3}
\end{equation*}
$$

is well defined on $\tilde{S}_{3}-\tilde{X}_{3}$. We shall extend the domain of this function to \tilde{S}_{3}. For $Q \in \tilde{S}_{3}-\tilde{X}_{3}, \lim _{\theta \rightarrow 0, \pi} Q$ belongs to \tilde{X}_{3}. On the other hand,

$$
\lim _{\theta \rightarrow 0} \psi(Q)=\mathrm{e}^{-\rho^{2} / 2} \rho^{|k|} L_{j}^{|k|}\left(\rho^{2}\right)\left(\delta_{M K} \mathrm{e}^{i K \phi} \mathrm{e}^{2 i k \psi}+(-1)^{J} \delta_{M,-K} \mathrm{e}^{-\mathrm{i} K \phi} \mathrm{e}^{-2 i k \varphi}\right) .
$$

The limit $\lim _{\theta \rightarrow 0} \psi(Q)$ becomes a function on \tilde{X}_{3} if and only if $K=2 k$. This is because, if and only if $K=2 k, \lim _{\theta \rightarrow 0} \psi(Q)$ is a function of $h(\phi) h(\psi) \in S O(2)$ and is a linear combination of the functions given in equation (7.2). Also, if $K=2 k$,
$\lim _{\theta \rightarrow \pi} \psi(Q)=\mathrm{e}^{-\rho^{2} / 2} \rho^{|k|} L_{j}^{|k|}\left(\rho^{2}\right)\left((-1)^{J} \delta_{M,-K} \mathrm{e}^{-\mathrm{i} 2 k(\phi-\psi)}+\delta_{M K} \mathrm{e}^{\mathrm{i} 2 k(\phi-\psi)}\right)$
which is a function of $h(\phi) h^{-1}(\psi) \in S O(2)$, and well defined on \tilde{X}_{3}.
Let $\gamma=\{n, j, J, M, 2 k\}, \Gamma=\{\gamma\}$ and

$$
\begin{equation*}
\psi_{\gamma}(Q)=L_{n}(v) \mathrm{e}^{-\rho^{2} / 2} \rho^{|k|} L_{j}^{|k|}\left(\rho^{2}\right)\left(D_{M, 2 k}^{J}(\phi, \theta, \psi)+(-1)^{J} D_{M,-2 k}^{J}(\phi, \theta, \psi)\right) . \tag{7.4}
\end{equation*}
$$

In the variables ρ and v,

$$
\mathrm{d} \mu_{3}(Q)=2 v^{4} \mathrm{~d} v \frac{\rho \mathrm{~d} \rho}{\sqrt{\rho^{2}+4}} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} \psi
$$

Therefore, $\left\{\sqrt[4]{\rho^{2}+4} v^{-2} \mathrm{e}^{-\nu / 2} \psi_{\gamma}(Q) \mid \gamma \in \Gamma\right\}$ is a basis for $\mathscr{L}^{2}\left(S_{3}^{+}, \mu_{3}\right)$.

7.3. Basis for $\mathscr{L}^{2}\left(S_{4}, \mu_{4}\right)$

A basis for $\mathscr{L}^{2}\left(S_{4}, \mu_{4}\right)$ can be identified in the same way as above. If $Q \in S_{4}$, then $Q=$ $v r$ diag($\left(e^{\varepsilon}-\mathrm{e}^{-\varepsilon}, 0\right) r^{\mathrm{T}}$, where $v \in \mathbb{R}^{+}, \varepsilon \in \mathbb{R}$ and $r \in S O(3)$. Therefore, S_{4} is a Cartesian product of \mathbb{R}^{+}and $\tilde{S}_{4}=\left\{r \operatorname{diag}\left(\mathrm{e}^{\varepsilon},-\mathrm{e}^{-\varepsilon}, 0\right) r^{\mathbf{T}} \mid r \in S O(3), \quad \varepsilon \in \mathbb{R}\right\}$. Let $\tilde{X}_{4}=$ $\left\{h \operatorname{diag}\left(\mathrm{e}^{\varepsilon},-\mathrm{e}^{-\varepsilon}, 0\right) h^{\mathrm{T}} \mid h \in S O(2), \varepsilon \in \mathbb{R}\right\}$. If $P \in \widetilde{X}_{4}$, then

$$
\begin{align*}
& u=p_{11}+p_{22}=\left(\mathrm{e}^{\varepsilon}-\mathrm{e}^{-\varepsilon}\right) \quad v=p_{11}-p_{22}=\left(\mathrm{e}^{\varepsilon}+\mathrm{e}^{-\varepsilon}\right) \cos 2 \psi \\
& w=2 p_{12}=\left(\mathrm{e}^{\varepsilon}+\mathrm{e}^{-\varepsilon}\right) \sin 2 \psi \tag{7.5}
\end{align*}
$$

and the other components of P are 0 . Since $v^{2}+w^{2}-u^{2}=4, \tilde{X}_{4}$ is the hyperboloid of one sheet, which is diffeomorphic to $\mathbb{R} \times S^{1}, S^{1}=\left\{\left(n_{1}, n_{2}\right) \mid n_{1}^{2}+n_{2}^{2}=1\right\}$. This is because both $(u, v, w) \rightarrow\left(u, v / \sqrt{v^{2}+w^{2}}, w / \sqrt{v^{2}+w^{2}}\right) \in \mathbb{R} \times S^{1}$ and $\left(u, n_{1}, n_{2}\right) \rightarrow\left(u, \sqrt{u^{2}+4} n_{1}\right.$, $\sqrt{\left.u^{2}+4 n_{2}\right) \in \tilde{S}_{4}}$ are differentiable. Therefore, the collection of functions $\mathrm{e}^{-u^{2} / 2} H_{m}(u) \mathrm{e}^{2 i k \psi}$ serves as a basis for the space of square integrable functions on \tilde{X}_{4}. If we make

$$
\psi_{\gamma}(Q)=L_{n}(v) \mathrm{e}^{-u^{2} / 2} H_{m}(u)\left(D_{M, 2 k}^{J}(\phi, \theta, \psi)+(-1)^{J} D_{M,-2 k}^{J}(\phi, \theta, \psi)\right)
$$

where $\gamma=\{n, m, J, M, 2 k\}$, then the collection $\left\{v^{-2} \mathrm{e}^{-v / 2} \psi_{\gamma}(Q) \mid \gamma \in \Gamma\right\}$ becomes a basis for $\mathscr{L}^{2}\left(S_{4}, \mu_{4}\right)$.

7.4. Basis for $\mathscr{L}^{2}\left(S_{2}^{+}, \mu_{2}\right)$

We shall show that S_{2}^{+}is homeomorphic to S_{3}^{+}and infer that the collection of the functions of the form (7.4) also serves as a basis for $\mathscr{L}^{2}\left(S_{2}^{+}, \mu_{2}\right)$. Let $f_{2}: S O(2) \times[0, \pi] \times S O(2) \times \mathbb{R}^{+2} \rightarrow S_{2}^{+}$and $f_{3}: S O(2) \times[0, \pi] \times S O(2) \times \mathbb{R}^{+2} \rightarrow S_{3}^{+}$be
defined by
$f_{2}\left(h(\phi), \theta, h(\psi), \lambda_{1}, \lambda_{2}\right)$

$$
=h(\phi) g(\theta) h(\psi) \operatorname{diag}\left(-\lambda_{1},-\lambda_{2}, 1 / \lambda_{1} \lambda_{2}\right) h^{\mathrm{T}}(\psi) g^{\mathrm{T}}(\theta) h^{\mathrm{T}}(\phi)
$$

$f_{3}\left(h(\phi), \theta, h(\psi), \lambda_{1}, \lambda_{2}\right)$

$$
=h(\phi) g(\theta) h(\psi) \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, 0\right) h^{\top}(\psi) g^{\mathrm{T}}(\theta) h^{\mathrm{T}}(\phi)
$$

Let

$$
\begin{aligned}
X_{2} & =\left\{h \operatorname{diag}\left(-\lambda_{1},-\lambda_{2}, 1 / \lambda_{1} \lambda_{2}\right) h^{\mathbf{T}} \mid h \in S O(2)\right\} \\
X_{3} & =\left\{h \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, 0\right) h^{\mathrm{T}} \mid h \in S O(2)\right\} .
\end{aligned}
$$

Then if and only if $\theta=0$ or $\pi, f_{2}\left(h(\phi), \theta, h(\psi), \lambda_{1}, \lambda_{2}\right) \in X_{2}$ and $f_{3}\left(h(\phi), \theta, h(\psi), \lambda_{1}, \lambda_{2}\right) \in X_{3}$. Also, if $\theta=0$ or π, then f_{2} and f_{3} depend on $h(\phi), h(\psi) \in S O(2)$ through the product $h(\phi) h(\psi)$ or $h(\phi) h^{-1}(\psi)$.

If

$$
P_{3}=h(\psi) \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, 0\right) h^{\top}(\psi) \in X_{3}
$$

and

$$
P_{2}=h(\psi) \operatorname{diag}\left(-\lambda_{1},-\lambda_{2}, 1 / \lambda_{1} \lambda_{2}\right) h^{\mathrm{T}}(\psi) \in X_{2}
$$

then

$$
P_{3}=\left(\begin{array}{ccc}
p_{11} & p_{12} & 0 \\
p_{12} & p_{22} & 0 \\
0 & 0 & 0
\end{array}\right) \quad P_{2}=\left(\begin{array}{ccc}
-p_{11} & -p_{12} & 0 \\
-p_{12} & -p_{22} & 0 \\
0 & 0 & 1 /\left(p_{11} p_{22}-p_{12}^{2}\right)
\end{array}\right)
$$

Since the map $P_{2} \rightarrow P_{3}$ and its inverse are continuous, $X_{2} \cong X_{3}$. Let η_{1} denote the homeomorphism from X_{2} to X_{3}. Obviously

$$
\eta_{2}: S O(2) \times[0, \pi] \times X_{2} \rightarrow S O(2) \times[0, \pi] \times X_{3}
$$

defined by

$$
\eta_{2}\left(h(\phi), \theta, P_{2}\right)=\left(h(\phi), \theta, \eta_{1}\left(P_{2}\right)\right)
$$

is a homeomorphism.
Now, if we define $g_{2}: S O(2) \times[0, \pi] \times X_{2} \rightarrow S_{2}^{+}$and $g_{3}: S O(2) \times[0, \pi] \times X_{3} \rightarrow S_{3}^{+}$by $g_{2}\left(h(\phi), \theta, P_{2}\right)=h(\phi) g(\theta) P_{2} g^{\mathrm{T}}(\theta) h^{\mathrm{T}}(\phi)$ and $g_{3}\left(h(\phi), \theta, P_{2}\right)=h(\phi) g(\theta) P_{3} g^{\mathrm{T}}(\theta) h^{\mathrm{T}}(\phi)$, then both of $\zeta=g_{3} \cdot \eta_{2} \cdot g_{2}^{-1}$ and $\tilde{\zeta}=g_{2} \cdot \eta_{2}^{-1} \cdot \eta_{2}^{-1} \cdot g_{3}^{-1}$ become well defined continuous maps whose compositions $\zeta \cdot \zeta$ and $\bar{\zeta} \cdot \zeta$ are identities. Therefore $S_{2}^{+} \cong S_{3}^{+}$. If we adopt the variables $v=\sqrt{\lambda_{1} \lambda_{2}}$ and $\rho=\sqrt{\lambda_{1} / \lambda_{2}}-\sqrt{\lambda_{2} / \lambda_{1}}$ instead of ε_{0} and ε_{2}, the invariant measure on S_{2}^{+}becomes

$$
\mathrm{d} \mu_{2}(Q)=\frac{\sqrt{3}}{2}\left(\frac{v^{2}+v^{-4}+\sqrt{\rho^{2}+4}}{\sqrt{\rho^{2}+4}}\right) \mathrm{d} v \rho \mathrm{~d} \rho \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} \psi
$$

Therefore, if $\psi_{\gamma}(Q)$ is given by the right side of equation (7.4), the collection $\left\{\mathrm{e}^{-v / 2}\left(\sqrt[4]{\rho^{2}+4} / \sqrt{\left.v^{2}+v^{-4}+\sqrt{\rho^{2}+4}\right)} \psi_{\gamma}(Q) \mid \gamma \in \Gamma\right\}\right.$ is an orthogonal basis for $\mathscr{L}^{2}\left(S_{2}^{+}, \mu_{2}\right)$.

7.5. Basis for $\mathscr{L}^{2}\left(S_{1}^{+}, \mu_{1}\right)$

Finally we shall identify a basis for $\mathscr{L}^{2}\left(S_{1}^{+}, \mu_{1}\right)$. Let $s=\left\{A \in s l(3, \mathbb{R}) \mid A=A^{\mathrm{T}}\right\}$ be the subspace of $\operatorname{sl}(3, \mathbb{R}) \cong \mathbb{R}^{8}$. Let Ξ be the two-dimensional subspace of $s \cong \mathbb{R}^{s}$ consisting of diagonal matrices. Then $\exp : \Xi \rightarrow \Lambda$ is a diffeomorphism. If $Q \in S_{1}^{+}$, then $Q=r \lambda^{2} r^{\mathrm{T}}$, where $\lambda \in \Lambda$ and $r \in S O(3)$. Since $\lambda=\exp (\xi)$ for a unique $\xi \in \Xi, Q=r \exp (\xi) r^{\top}=\exp (2 A)$, where $A=r \xi r^{\mathrm{T}} \in s$. Any $A \in s$ can be represented in the form $r \xi^{\mathrm{T}}$ for some $\xi \in \Xi$ and $r \in S O(3)$. The map $\exp : s \rightarrow S_{1}^{+}$defined by the matrix power series is a diffeomorphism [32]. Therefore, any basis for $\mathscr{L}^{2}\left(\mathbb{R}^{5}, \mu_{\mathbb{R}^{5}}\right)$ becomes a basis for $\mathscr{L}^{2}\left(S_{1}^{+}, \mu_{1}\right)$, if the difference of the invariant measures is suitably adjusted. However, in order to show the relation of the $C M(3)$ model and the Bohr model, we will explain some detail.

Let

$$
\begin{array}{ll}
E_{0}=\left(\begin{array}{ccc}
-1 / \sqrt{6} & 0 & 0 \\
0 & -1 / \sqrt{6} & 0 \\
0 & 0 & \sqrt{2 / 3}
\end{array}\right) \\
E_{ \pm 1}=\left(\begin{array}{ccc}
0 & 0 & \mp \frac{1}{2} \\
0 & 0 & \mathrm{i} / 2 \\
\mp \frac{1}{2} & \mathrm{i} / 2 & 0
\end{array}\right) .
\end{array}
$$

Then, these matrices form an orthonormal basis for s with respect to the scalar product $\left(E_{\mu}, E_{v}\right)=\operatorname{Tr} E_{\mu} \bar{E}_{v}$. If $Q=\left(Q_{i j}\right)$ is a 3×3 real symmetric matrix, then

$$
\begin{equation*}
Q=Q^{0} I+\sum_{\mu=-2}^{2} Q_{\mu}^{2} E_{\mu} \tag{7.6}
\end{equation*}
$$

where Q^{0} and Q_{μ}^{2} s are expressions given by equations (1.2) and (1.3). The matrices E_{μ} transform under the action of $r=h(\phi) g(\theta) h(\psi) \in S O(3)$, as

$$
\begin{equation*}
r E_{\mu} r^{\mathrm{T}}=\sum_{v=-2}^{2} D_{v \mu}^{2}(\phi, \theta, \psi) E_{v} \tag{7.7}
\end{equation*}
$$

Now, if $A \in s$ then $A=r \xi r^{\mathrm{T}}$, for some $\xi \in \Xi$ and $r \in S O(3)$. Since $\left\{E_{0},\left(E_{2}+E_{-2}\right) /\right.$ $\sqrt{2}\}$ is a basis for $\Xi, \xi=\varepsilon_{0} E_{0}+\varepsilon_{2}\left(E_{2}+E_{-2}\right) / \sqrt{2}$ for some $\varepsilon_{0}, \varepsilon_{2} \in \mathbb{R}$. Therefore, any $A \in s$ is the linear combination $\sum_{\mu=-2}^{2} \alpha_{\mu} E_{\mu}$, whose coefficients are

$$
\begin{equation*}
\alpha_{\mu}=\varepsilon_{0} D_{\mu, 0}^{2}(\phi, \theta, \psi)+\frac{\varepsilon_{2}}{\sqrt{2}}\left[D_{\mu, 2}^{2}(\phi, \theta, \psi)+D_{\mu,-2}^{2}(\phi, \theta, \psi)\right] \quad \mu=0, \pm 1, \pm 2 \tag{7.8}
\end{equation*}
$$

This expression is essentially the same as expression (1.11). Thus, $\mathbb{R}^{5}=\left\{\alpha_{\mu}\right\}$ of the Bohr model is the tangent space of S_{1}^{+}at the origin.

The Euclidean measure $\prod_{v=-2}^{2} \mathrm{~d} a_{v}$ on s is, apart from the numeral factors,

$$
\begin{equation*}
\mathrm{d} \mu_{s}(A)=\beta^{3}\left|\prod_{k=1}^{3} \sin \left(\gamma-\frac{2 \pi}{3} k\right)\right| \beta \mathrm{d} \beta \mathrm{~d} \gamma \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \mathrm{~d} \psi \tag{7.9}
\end{equation*}
$$

On the other hand, if we substitute $\beta \cos \gamma$ and $\beta \sin \gamma$ for ε_{0} and ε_{2} in equation (5.5), respectively, we have
$\mathrm{d} \mu_{1}(Q)=\left|8 \prod_{k=1}^{3} \sinh \left[\sqrt{2} \beta \sin \left(\gamma-\frac{2 \pi}{3} k\right)\right]\right| \beta \mathrm{d} \beta \mathrm{d} \gamma \sin \theta \mathrm{d} \phi \mathrm{d} \psi$.
Let $\psi_{\omega}(\beta, \gamma, \phi, \theta, \psi)$ denote the eigenfunction [33-35] of the five-dimensional harmonic oscillator, where ω denotes a set of quantum numbers. Let $\Omega=\{\omega\}$. Then $\left\{\psi_{\omega}(\beta, \gamma, \phi, \theta, \psi) \mid \omega \in \Omega\right\}$ is a basis for $\mathscr{L}^{2}\left(s, \mu_{s}\right)$. Therefore,

$$
\left\{\left.\sqrt{ }\left(\left|\prod_{k=1}^{3} \frac{\beta \sin (\gamma-2 \pi k / 3)}{\sinh [\sqrt{2} \beta \sin (\gamma-2 \pi k / 3)]}\right|\right) \psi_{\omega}(\beta, \gamma, \phi, 0, \psi) \right\rvert\, \omega \in \Omega\right\}
$$

serves as a basis for $\mathscr{L}^{2}\left(S_{1}^{+}, \mu_{1}\right)$. As is desired from $\lim _{\beta \rightarrow 0} Q=I+2 A, \lim _{\beta \rightarrow 0} \mathrm{~d} \mu_{1}(Q)$ is proportional to $\mathrm{d} \mu_{s}(A)$.

8. Representation of $\mathrm{cm}(3)$

Let S, O, K and k denote an $S L(3, \mathbb{R})$ orbit, its origin, the isotropy subgroup and the Lie algebra of K. Let $\hat{Z} \in c m(3)$ and $U_{\varepsilon}=\mathrm{e}^{\varepsilon \hat{Z}}$. The map $\hat{Z} \rightarrow \sigma(\hat{Z})$ defined by

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{\left(\rho\left(U_{\varepsilon}\right) f\right)(Q)-f(Q)}{\varepsilon}=\sigma(Z) f(Q) \tag{8.1}
\end{equation*}
$$

is a representation of $\mathrm{cm}(3)$. Since

$$
\rho\left(\mathrm{e}^{\mathrm{i} \varepsilon \Omega_{k l}}\right) f\left(Q^{\prime}\right)=\mathrm{e}^{\mathrm{i} \varepsilon Q_{k l}} f\left(Q^{\prime}\right)
$$

$\sigma\left(Q_{i j}\right)=Q_{i j}^{\prime}$. For $\hat{Z} \in s g$, the left side of equation (8.1) can be calculated with equation (6.2). We denote by \hat{Z} the element of $s g$ which is mapped to $Z \in s l(3, \mathbb{R})$ by the isomorphism $h \mid s g: s g \rightarrow s l(3, \mathbb{R})$.

Let

$$
A_{1}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \quad A_{2}=\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) \quad A_{3}=\left(\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then $\left\{A_{i}, E_{\mu} \mid i=1,2,3, \mu=0, \pm 1, \pm 2\right\}$ is a basis for $s l(3, \mathbb{R})$. In some step of calculation, it is convenient to use real symmetric matrices

$$
\begin{array}{ll}
B_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & B_{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \\
B_{3}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & H_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{array}
$$

instead of $E_{ \pm 2}$ and $E_{ \pm 1}$. Let $Z_{1}=\left(B_{1}-A_{1}\right)$ and $Z_{2}=\left(B_{2}+A_{2}\right)$. By means of those matrices, the Lie algebras of isotropy subgroups are

$$
\begin{array}{ll}
s o(3)=\operatorname{span}\left\{A_{1}, A_{2}, A_{3}\right\} & s o(2,1)=\operatorname{span}\left\{B_{1}, B_{2}, A_{3}\right\} \\
m(2)=\operatorname{span}\left\{Z_{1}, Z_{2}, A_{3}\right\} & m h(2)=\operatorname{span}\left\{Z_{1}, Z_{2}, B_{3}\right\} \\
s a(2)=\operatorname{span}\left\{Z_{1}^{\mathrm{T}}, Z_{2}^{\mathrm{T}}, A_{3}, B_{3}, H_{2}\right\} .
\end{array}
$$

Let $k \rightarrow L_{k}$ be an irreducible unitary representation of K in H^{L}. We denote by $\sigma^{L}(Z)$ the skew Hermitian operator which represents $Z \in k$. Then, if $k=\mathrm{e}^{\varepsilon Z} \in K$,

$$
\begin{equation*}
L_{k}=\exp \left(\varepsilon \sigma^{L}(Z)\right) \tag{8.2}
\end{equation*}
$$

In sections 4 and $7, Q \in S$ is parametrized as $Q=r \lambda O r^{\tau}$, where $\lambda \in \Lambda$ and $r \in S O(3)$. The expression is rewritten as $Q=r \lambda^{1 / 2} O\left(r \lambda^{1 / 2}\right)^{\mathrm{T}}$, where $\lambda^{1 / 2}=\operatorname{diag}\left(\sqrt{\lambda_{2}}, \sqrt{\lambda_{2}}, \sqrt{\lambda_{3}}\right)$ for $\lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \Lambda$. If we denote $\lambda^{1 / 2}$ by g_{Q}, then $Q=g_{Q} O g_{Q}^{\mathrm{T}}=g_{Q} \cdot O$. It is convenient to take $\exp \left(\varepsilon_{0} E_{0}\right)$ or $\exp \left(\varepsilon_{0} E_{0}+\varepsilon_{2} H_{2}\right)$ as $\lambda^{1 / 2}$ according to whether S is S_{5}^{+}or the other orbits.

8.1. Angular momentum operators

If $g_{\varepsilon}=\exp \left(\varepsilon A_{k}\right)$, then $U_{g_{\varepsilon}}=\exp \left(\varepsilon \hat{A}_{k}\right)$. Since $g_{\varepsilon}^{-1} g_{Q}=r^{\prime} \lambda^{1 / 2}$, where $r^{\prime} \in S O(3)$, $\sqrt{\mathrm{d} \mu\left(g_{\varepsilon}^{-1} \cdot Q\right) / \mathrm{d} \mu(Q)}=1$. The expressions $\sigma\left(\hat{A}_{k}\right)$ have two different forms according to whether S is S_{5}^{+}or the other orbits.

If $S=S_{5}^{+}$, we can choose $h(\phi) g(\theta)$ as $r \in S O(3)$. However,

$$
\begin{equation*}
\mathrm{e}^{-\varepsilon A_{k}} h(\phi) g(\theta)=h(\phi+\delta \phi) g(\theta+\delta \theta) h(\delta \psi) \tag{8.3}
\end{equation*}
$$

As, $h(\delta \psi) \lambda O h^{\top}(\delta \psi)=\lambda O$, the rotation $h(\delta \psi)$ belongs to $S A(2)$. Therefore, $L_{h(\delta \psi)}^{-1}=\exp \left(-\delta \psi \sigma{ }^{L}\left(A_{3}\right)\right)$. Calculating $\mathrm{d} \phi / \mathrm{d} \varepsilon, \mathrm{d} \theta / \mathrm{d} \varepsilon$ and $\mathrm{d} \psi / \mathrm{d} \varepsilon$ with equation (8.3), we have

$$
\begin{align*}
& \sigma\left(\hat{A}_{1}\right)=\sin \phi \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}+\frac{\cos \phi}{\sin \theta} \sigma^{L}\left(A_{3}\right) \tag{8.4a}\\
& \sigma\left(\hat{A}_{2}\right)=-\cos \phi \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}+\frac{\cos \phi}{\sin \theta} \sigma^{L}\left(A_{3}\right) \tag{8.4b}\\
& \sigma\left(\hat{A}_{3}\right)=-\frac{\partial}{\partial \phi} \tag{8.4c}
\end{align*}
$$

If S is one of $S_{1}^{+}, S_{2}^{+}, S_{3}^{+}$and S_{4}, we need to take $h(\phi) g(\theta) h(\psi)$ as $r \in S O(3)$. From

$$
\mathrm{e}^{-\varepsilon A_{k}} h(\phi) g(\theta) h(\psi)=h(\phi+\delta \phi) g(\theta+\delta \theta) h(\psi+\delta \psi)
$$

we can calculate $\mathrm{d} \phi / \mathrm{d} \varepsilon, \mathrm{d} \theta / \mathrm{d} \varepsilon$ and $\mathrm{d} \psi / \mathrm{d} \varepsilon$, to obtain

$$
\begin{align*}
& \sigma\left(\hat{A}_{1}\right)=\sin \phi \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}-\frac{\cos \phi}{\sin \theta} \frac{\partial}{\partial \psi} \tag{8.5a}\\
& \sigma\left(\hat{A}_{2}\right)=-\cos \phi \frac{\partial}{\partial \theta}+\cot \theta \cos \phi \frac{\partial}{\partial \phi}-\frac{\cos \phi}{\sin \theta} \frac{\partial}{\partial \psi} \tag{8.5b}\\
& \sigma\left(\hat{A}_{3}\right)=-\frac{\partial}{\partial \phi} \tag{8.5c}
\end{align*}
$$

8.2. Symmetric tensor operators

Instead of calculating the expressions of $\sigma\left(\hat{E}_{\mu}\right)$ directly at Q, it is easier to calculate them at $Q^{\prime}=r^{-1} \cdot Q$ and the origin $O=g_{Q}^{-1} \cdot Q$, and later transform them [36] to Q. If $Z \in \operatorname{sl}(3, \mathbb{R})$ and $h \in S l(3, \mathbb{R})$, then $h Z h^{-1} \in S l(3, \mathbb{R})$. That is,

$$
h Z h^{-1}=\sum_{i=1}^{3} c_{i} A_{t}+\sum_{\mu=-2}^{2} \mathrm{~d} \mu E_{\mu} \quad c_{i} \in \mathbb{R} \quad \mathrm{~d}_{\mu}=(-1)^{\mu} \mathrm{d}_{-\mu} \in \mathbb{C}
$$

Let $g_{c}=h \mathrm{e}^{\varepsilon Z} h^{-1}$. Since $h \mathrm{e}^{\varepsilon Z} h^{-1}=\exp \left(\varepsilon h Z h^{-1}\right)$,

$$
U_{g_{t}}=\exp \left[\varepsilon\left(\sum_{i=1}^{3} c_{i} \hat{A}_{i}+\sum_{\mu=-2}^{2} \mathrm{~d}_{\mu} \hat{E}_{\mu}\right)\right] .
$$

Therefore,

$$
\begin{gather*}
\lim _{\varepsilon \rightarrow 0} \frac{\left(\rho\left(U_{g_{\varepsilon}}\right) f\right)(Q)-f(Q)}{\varepsilon}=\sigma\left(\sum_{i=1}^{3} c_{i} \hat{A}_{i}+\sum_{\mu=-2}^{2} \mathrm{~d}_{\mu} \hat{E}_{\mu}\right) f(Q) \\
=\left[\sum_{i=1}^{3} c_{i} \sigma\left(\hat{A}_{i}\right)+\sum_{\mu=-2}^{2} \mathrm{~d}_{\mu} \sigma\left(\hat{E}_{\mu}\right)\right] f(Q) . \tag{8.6}
\end{gather*}
$$

The left side of the above equation can be calculated with equation (6.2). Since $\sigma\left(\hat{\boldsymbol{A}}_{k}\right) \mathrm{s}$ are known, we can find $\sigma\left(\hat{E}_{\mu}\right)$ s from five linear equations.

Let $g_{\varepsilon}=r \mathrm{e}^{\varepsilon E_{0}} r^{-1}$. Then

$$
\begin{aligned}
& f\left(g_{\varepsilon}^{-1} \cdot Q\right) \approx f(Q)-\varepsilon \frac{\partial f(Q)}{\partial \varepsilon_{0}} \\
& \sqrt{\frac{\mathrm{~d} \mu\left(g_{\varepsilon}^{-1} \cdot Q\right)}{\mathrm{d} \mu(Q)}} \approx 1-\sqrt{6} \varepsilon
\end{aligned} \quad \text { if } Q \in S_{5}^{+} \quad\left(\begin{array}{ll}
\sqrt{6} \varepsilon & \text { if } Q \in S_{3}^{+} \text {or } S_{4}
\end{array}\right.
$$

$\sqrt{\mathrm{d} \mu_{1,2}\left(g^{-1} \cdot Q\right) / \mathrm{d} \mu_{1,2}(Q)}=1$ for any $g \in S L(3, \mathbb{R})$. Since $r E_{0} r^{-1}=\sum_{v=-2}^{2} D_{v, 0}^{2} E_{v^{\prime}}$ equation (8.6) becomes

$$
\begin{aligned}
{\left[\sum_{v=-2}^{2} D_{v, 0}^{2} \sigma\left(\hat{E}_{v}\right)\right] f(Q) } & =-\left(\sqrt{6}+\frac{\partial}{\partial \varepsilon_{0}}\right) f(Q) \quad \text { if } Q \in S_{5}^{+} \\
& =\left(\frac{5}{\sqrt{6}}-\frac{\partial}{\partial \varepsilon_{0}}\right) f(Q) \quad \text { if } Q \in S_{3}^{+} \text {or } S_{4} \\
& =-\frac{\partial f(Q)}{\partial \varepsilon_{0}} \quad \text { if } Q \in S_{1}^{+} \text {or } S_{2}^{+}
\end{aligned}
$$

Let $g_{\varepsilon}=r \mathrm{e}^{\varepsilon H_{2}} r^{-1}$. If $Q \in S_{5}^{+}$, then $g_{\varepsilon}^{-1} g_{Q}=r \lambda^{1 / 2} \mathrm{e}^{-\varepsilon H_{2}}$ and $g_{\varepsilon}^{-1} \cdot \mathrm{Q}=\mathrm{Q}$. Consequently, the measure is unchanged by g_{ε} and $k=\mathrm{e}^{-\varepsilon H_{2}}$ belongs to $S A(2)$. Therefore, $L_{k}^{-1}=$ $\exp \left[\varepsilon \sigma^{L}\left(H_{2}\right)\right]$. If Q belongs to the other orbits,

$$
\begin{aligned}
f\left(g_{\varepsilon}^{-1} \cdot Q\right) \approx f(Q)-\varepsilon \frac{\partial f(Q)}{\partial \varepsilon_{2}} & \\
\sqrt{\frac{\mathrm{~d} \mu\left(g_{\varepsilon}^{-1} \cdot Q\right)}{\mathrm{d} \mu(Q)}} & \approx 1-\varepsilon \frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}-\lambda_{2}}
\end{aligned} \quad \begin{aligned}
& \text { if } Q \in S_{3}^{+} \\
& \\
& \approx 1-\varepsilon \frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}+\lambda_{2}}
\end{aligned} \quad \text { if } Q \in S_{4}
$$

where $\lambda_{1}=\exp \left(\sqrt{2} \varepsilon_{2}-\sqrt{2 / 3} \varepsilon_{0}\right)$ and $\lambda_{2}=\exp \left(-\sqrt{2} \varepsilon_{2}-\sqrt{2 / 3} \varepsilon_{0}\right)$. Since $H_{2}=\left(E_{2}+E_{-2}\right) /$ $\sqrt{2}$, equation (8.6) implies that

$$
\begin{aligned}
{\left[\frac { 1 } { \sqrt { 2 } } \sum _ { v = - 2 } ^ { 2 } \left(D_{v, 2}^{2}\right.\right.} & \left.\left.+D_{\mu,-2}^{2}\right) \sigma\left(\hat{E}_{v}\right)\right] f(Q) \\
& =\sigma^{L}\left(H H_{2}\right) f(Q) \quad \text { if } Q \in S_{5}^{+} \\
& =-\left(\frac{\partial}{\partial \varepsilon_{2}}+\frac{\lambda_{1} \pm \lambda_{2}}{\lambda_{1} \mp \lambda_{2}}\right) f(Q) \quad \text { if } Q \in S_{3}^{+} \text {or } S_{4} \\
& =-\frac{\partial f(Q)}{\partial \varepsilon_{2}} \quad \text { if } Q \in S_{1}^{+} \text {or } S_{2}^{+}
\end{aligned}
$$

If $Z \in k$ and $g_{\varepsilon}=r \lambda^{1 / 2} \exp (\varepsilon Z) \lambda^{-1 / 2} r^{-1}$, then $g_{\varepsilon}^{-1} g_{Q}=g_{Q} \exp (-\varepsilon Z)$. Therefore, $\sqrt{\mathrm{d} \mu\left(g_{\varepsilon}^{-1} \cdot Q\right) / \mathrm{d} \mu(Q)}=1$ and the right side of equation (8.6) is $\sigma^{L}(Z) f(Q)$.

If $Z=H_{2}$ then $g_{\varepsilon}=r \exp \left(\varepsilon H_{2}\right) r^{-1}$, and the expression of the left side of equation (8.6) is already known. We need to calculate the left side of equation (8.6) for $A_{2} \mathrm{~s}, B_{1} \mathrm{~s}$. The other elements of k are their linear combinations. Let

$$
\begin{equation*}
c_{i}(\lambda)=\frac{1}{2}\left(\sqrt{\frac{\lambda_{k}}{\lambda_{j}}}+\sqrt{\frac{\lambda_{j}}{\lambda_{k}}}\right) \quad s_{i}(\lambda)=\frac{1}{2}\left(\sqrt{\frac{\lambda_{k}}{\lambda_{j}}}-\sqrt{\frac{\lambda_{j}}{\lambda_{k}}}\right) \quad i=1,2,3 \tag{8.7}
\end{equation*}
$$

where i, j, k is a cyclic permutation of $1,2,3$. Coefficients c_{i} and d_{v} in equation (8.6) are calculated from the following formulae:

$$
\lambda^{1 / 2} A_{k} \lambda^{-1 / 2}=s_{k}(\lambda) B_{k}+c_{k}(\lambda) A_{k} \quad \lambda^{1 / 2} B_{k} \lambda^{-1 / 2}=s_{k}(\lambda) A_{k}+c_{k}(\lambda) B_{k}
$$

and

$$
B_{1}=-\mathrm{i}\left(E_{1}+E_{-1}\right) \quad B_{2}=\left(E_{-1}-E_{1}\right) \quad B_{3}=\mathrm{i}\left(E_{2}-E_{-2}\right)
$$

The expressions for angular momentum operators in the body fixed frame also differ according as $Q \in S_{5}^{+}$or not. If $r_{t j}$ denotes the (i, j) component of $r \in S O(3)$, then $r A_{k} r^{-1}=$ $\Sigma_{j=1}^{3} r_{j k} A_{j}$, and therefore $-\mathrm{i} \mathscr{K}_{k}=\sigma\left(\sum_{j=1}^{3} r_{j k} \hat{A}_{j}\right)=\Sigma_{j=1}^{3} r_{j k} \sigma\left(\hat{A}_{j}\right)$. If $r=h(\phi) g(\theta) h(\psi)$, we have the well known expressions

$$
\begin{align*}
& -\mathrm{i} \mathscr{K}_{1}=-\cot \theta \cos \psi \frac{\partial}{\partial \psi}-\sin \psi \frac{\partial}{\partial \theta}+\frac{\cos \phi}{\sin \theta} \frac{\partial}{\partial \phi} \tag{8.8a}\\
& -\mathrm{i} \mathscr{K}_{2}=\cot \theta \sin \psi \frac{\partial}{\partial \psi}-\cos \psi \frac{\partial}{\partial \theta}-\frac{\sin \phi}{\sin \theta} \frac{\partial}{\partial \phi} \tag{8.8b}\\
& -\mathrm{i} \mathscr{K}_{3}=-\frac{\partial}{\partial \psi} . \tag{8.8c}
\end{align*}
$$

However, if $Q \in S_{S}^{+}$, since $r=h(\phi) g(\theta)$,
$-\mathrm{i} \mathscr{K}_{1}=\frac{1}{\sin \theta} \frac{\partial}{\partial \phi}+\cot \theta \sigma^{L}\left(A_{3}\right) \quad-\mathrm{i} \mathscr{\mathscr { L }}_{2}=-\frac{\partial}{\partial \theta} \quad-\mathrm{i} \mathscr{K}_{3}=\sigma^{2}\left(A_{3}\right)$.
With the above expressions, expressions for $\sigma\left(\hat{E}_{\mu}\right)$ s are calculated. All of them are of the form $\sigma\left(\hat{E}_{\mu}\right)=\Sigma_{v=-2}^{2} \bar{D}_{\mu, v}^{2}(\phi, \theta, \psi) T_{v}$, where ψ is taken to be identically 0 on S_{5}^{+}. We list the expressions of $T_{v} s$ below.

On S_{5}^{+},

$$
\begin{align*}
& T_{ \pm 2}=\frac{1}{2}\left[\sqrt{2} \sigma^{L}\left(H_{2}\right) \mp \mathrm{i} \sigma^{L}\left(B_{3}\right)\right] \tag{8.10a}\\
& T_{ \pm 1}=\frac{1}{2}\left[\mathrm{e}^{-\sqrt{6} \epsilon_{0}}\left\{\mathrm{i}^{L}\left(Z_{\mathrm{i}}^{\mathrm{T}}\right) \mp \sigma^{L}\left(Z_{2}^{\mathrm{T}}\right)\right\}\right. \\
& \tag{8.10b}\\
& \left.\quad \mp \frac{\partial}{\partial \theta}-\frac{\mathrm{i}}{\sin \theta}\left(\frac{\partial}{\partial \phi}+\cot \theta \sigma^{L}\left(A_{3}\right)\right)\right] \tag{8.10c}\\
& T_{0}=-\left(\sqrt{6}+\frac{\partial}{\partial \varepsilon_{0}}\right) .
\end{align*}
$$

On S_{3}^{+},

$$
\begin{align*}
& T_{ \pm 2}=\frac{1}{2}\left[\sqrt{2}\left(-\frac{\partial}{\partial \varepsilon_{2}}-\frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}-\lambda_{2}}\right) \mp\left(\mathrm{i} \frac{\sigma^{L}\left(A_{3}\right)}{s_{3}(\lambda)}-\frac{c_{3}(\lambda)}{s_{3}(\lambda)} \mathscr{H}_{3}\right)\right] \tag{8.11a}\\
& T_{ \pm 1}=\frac{1}{2}\left[\mathrm{i} \frac{\lambda_{3}}{\lambda_{1}} \sigma^{L}\left(Z_{1}\right) \mp \frac{\lambda_{3}}{\lambda_{2}} \sigma^{L}\left(Z_{2}\right)+\mathscr{K}_{1} \mp \mathscr{H}_{2}\right] \tag{8.11b}\\
& T_{0}=\left(\frac{5}{\sqrt{6}}-\frac{\partial}{\partial \varepsilon_{0}}\right) \tag{8.11c}
\end{align*}
$$

where $\lambda_{1}=\exp \left(\sqrt{2} \varepsilon_{2}-\sqrt{2 / 3} \varepsilon_{0}\right), \lambda_{2}=\exp \left(-\sqrt{2} \varepsilon_{2}-\sqrt{2 / 3} \varepsilon_{0}\right)$.
On S_{4}, the expressions of T_{0} and $T_{ \pm 1}$ are the same as above, and

$$
\begin{equation*}
T_{ \pm 2}=\frac{1}{2}\left[\sqrt{2}\left(-\frac{\partial}{\partial \varepsilon_{2}}-\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right) \mp\left(\mathrm{i} \frac{\sigma^{L}\left(B_{2}\right)}{s_{3}(\lambda)}-\frac{s_{3}(\lambda)}{c_{3}(\lambda)} \mathscr{K}_{3}\right)\right] . \tag{8.12}
\end{equation*}
$$

On S_{1}^{+}

$$
\begin{align*}
& T_{ \pm 2}=\frac{1}{2}\left[-\sqrt{2} \frac{\partial}{\partial \varepsilon_{2}} \mp\left(\mathrm{i} \frac{\sigma^{L}\left(A_{3}\right)}{s_{3}(\lambda)}-\frac{c_{3}(\lambda)}{s_{3}(\lambda)} \mathscr{H}_{3}\right)\right] \tag{8.13a}\\
& T_{ \pm 1}=\frac{1}{2}\left[\mathrm{i} \frac{\sigma^{L}\left(A_{1}\right)}{s_{1}(\lambda)} \mp \frac{\sigma^{L}\left(A_{2}\right)}{s_{2}(\lambda)}-\frac{c_{1}(\lambda)}{s_{1}(\lambda)} \mathscr{K}_{1} \mp \frac{c_{2}(\lambda)}{s_{2}(\lambda)} \mathrm{i} \mathscr{K}_{2}\right] \tag{8.13b}\\
& T_{0}=-\frac{\partial}{\partial \varepsilon_{0}} . \tag{8.13c}
\end{align*}
$$

On S_{2}^{+}, the expressions of T_{0} and $T_{ \pm 2}$ are the same as above, and

$$
\begin{equation*}
T_{ \pm 1}=\frac{1}{2}\left[\mathrm{i} \frac{\sigma^{L}\left(B_{1}\right)}{c_{1}(\lambda)} \mp \frac{\sigma^{L}\left(B_{2}\right)}{c_{2}(\lambda)}-\frac{s_{1}(\lambda)}{c_{1}(\lambda)} \mathscr{K}_{1} \mp \frac{s_{2}(\lambda)}{c_{2}(\lambda)} \mathrm{i} \mathscr{K}_{2}\right] . \tag{8.14}
\end{equation*}
$$

Transforming variables from ε_{0} and ε_{2} to $v=\sqrt{\lambda_{1} \lambda_{2}}$ and $\varepsilon=\log \sqrt{\lambda_{1} / \lambda_{2}}$ or $\rho=\mathrm{e}^{\epsilon}-\mathrm{e}^{-\varepsilon}$ is straightforward.

9. $C M(3)$ model Hamiltonian

If $Q \in S_{1}^{+}$and $\beta=\sqrt{\varepsilon_{0}^{2}+\varepsilon_{2}^{2}}$ is small and the representation of $S O(3)$ is trivial, $\sigma\left(\hat{E}_{\mu}\right)$ approaches to $-\partial / \partial \alpha_{\mu}=-\Sigma_{\nu=-2}^{2} \bar{D}_{\mu, \nu}^{2} \pi_{\nu}$, where α_{μ} is given in equation (1.11) and
$\pi_{ \pm 2}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial \varepsilon_{2}} \pm \frac{\mathscr{K}_{3}}{2 \varepsilon_{2}}\right) \quad \pi_{ \pm 1}=\frac{1}{2}\left(\frac{\mathscr{K}_{1}}{u+v} \mp \mathrm{i} \frac{\mathscr{K}_{2}}{u-v}\right) \quad \pi_{0}=\frac{\partial}{\partial \varepsilon_{0}}$
where $u=\sqrt{3 / 2} \varepsilon_{0}$ and $v=\varepsilon_{2} / \sqrt{2}$.
Therefore, the analogue of the Bohr Hamiltonian in the $C M(3)$ model will be

$$
\begin{equation*}
\mathscr{H}=-\frac{1}{2 B} \sum_{\mu=-2}^{2}(-1)^{\mu} \hat{\sigma}\left(E_{\mu}\right) \hat{\sigma}\left(E_{-\mu}\right)+C \sum_{\mu=-2}^{2}(-1)^{\mu} Q_{\mu}^{2} Q_{-\mu}^{2} \tag{9.2}
\end{equation*}
$$

where B and C are parameters which cannot be determined from the model.
The reason why only the representation of $\mathrm{cm}(3)$ in $\mathscr{L}^{2}\left(S_{1}^{+}, \mu_{1}\right)$ has the correspondence with the Bohr model is as follows. Consider a quadratic form $A(\boldsymbol{y})=\sum_{i, j=1}^{3} Q_{i j} y_{i} y_{j}$, where $\boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}\right)$. With formula (1.1), $A(y)=$ $\sum_{n=1}^{A}\left(\sum_{i=1}^{3} x_{m n} y_{i}\right)^{2}$. Let $\Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{A}\right)$ be a wavefunction of the A-particle system, $\mathrm{d} \mathbf{x}_{n}=$ $\mathrm{d} x_{1 n} \mathrm{~d} x_{2 n} \mathrm{~d} x_{3 n}$ and
$\rho_{n}\left(\mathbf{x}_{n}\right)=\int_{\mathbb{R}^{3(A-1)}} \bar{\Psi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{A}\right) \Psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{A}\right) \mathrm{d} \mathbf{x}_{1} \ldots \mathrm{~d} \mathbf{x}_{n-1} \mathrm{~d} \mathbf{x}_{n+1} \ldots \mathrm{~d} \mathbf{x}_{A}$.
Then $\langle\Psi| A(y)|\Psi\rangle=\sum_{n=1}^{A} \int\left(\sum_{1=1}^{3} x_{m} y_{l}\right)^{2} \rho_{n}\left(\mathrm{x}_{n}\right) \mathrm{dx} \mathrm{x}_{n} \geqslant 0$. Therefore, if $\langle\Psi| A(y)|\Psi\rangle=0$, then $\int\left(\sum_{i=1}^{3} x_{i n} y_{i}\right)^{2} \rho_{n}\left(\mathbf{x}_{n}\right) \mathrm{d} \mathbf{x}_{n}=0$ for any n. As $\rho_{n}\left(\mathbf{x}_{n}\right) \geqslant 0$ and is not identically 0 , $\left(\Sigma_{i=1}^{3} x_{i n} y_{i}\right)^{2}=0$ for any n. As y is arbitrary, $\mathbf{x}_{n}=0$ for any n. Thus, the matrix ($Q_{i j}$) must be positive definite. Only the representation in $\mathscr{L}^{2}\left(S_{1}^{+}, \mu_{1}\right)$ satisfies the condition. We do not know if the other representations have applications in some field of physics or not.

Acknowledgment

One of the authors (HO) dedicates this article to the memory of MN.

References

[1] Weaver L, Biedenharn L C and Cusson R Y 1973 Ann. Phys., (NY) 77
[2] Rosensteel G and Rowe D J 1976 Ann. Phys., (NY) 961
[3] Weaver O L, Cusson R Y and Biedenharn L C 1976 Ann. Phys., (NY) 102493
[4] Rosensteel G and Ihrig E 1979 Ann. Phys., (NY) 121113
[5] Rosensteel G and Rowe D J 1979 Ann. Phys., (NY) 12336
[6] Bohr A 1952 Mat.-fys. Medd, Dan. Vid. Selsk. 26 No 14
[7] Bohr A and Mottelson B 1952 Mat.-fys, Medd. Dan. Vid. Selsk. 27 No 16
[8] Barut A O and Raczka R 1986 Theory of Group Representations and Applications (Singapore: World Scientific) p 249
[9] Barut A O and Raczka 1986 Theory of Group Representations and Applications (Singapore: World Scientific) p 8
[10] Sagle A and Welde E 1973 Introduction to Lie Groups and Lie Algebras (New York: Academic) p 32
[11] Matsushima Y 1972 Differentiable Manfolds (New York: Dekker) p 181
[12] Barut A O and Raczka 1986 Theory of Group Representations and Applications (Singapore: World Scientific) p 503
[13] Dírac P. A. M. 1958 The Principle of Quantum Mechanics (New York: Oxfo:d University Press)
[14] Satake I 1975 Linear Algebra (New York: Dekker) p 184
[15] Vilenkin N Ja 1963 Special Functions and Theory of Group Representations (Providence, RI: American Mathematical Society)
[16] Boerner H 1970 Representations of Groups (Amsterdam: North-Holland) p 107
[17] Gel'fand I M and Graev M I 1956 American Mathematical Socicty Transiations series 2, vol 2 (Providence, RI: American Mathematical Society) p 147
[18] Chevalley C 1970 Theory of Lie Groups (Princeton: Princeton University Press) p 14
[19] Munkres J R 1975 Topology (Englewood Cliffs: Prentice-Hall) p 345
[20] Munkres J R 1975 Topology (Englewood Cliffs: Prentice-Hall) p 134
[21] Guillemin V and Pollack A 1974 Differential Topology (Englewood Cliffs: Prentice Hall) p 21
[22] Sugiura M 1975 Unitary Representations and Harmonic Analysis (Tokyo: Kodansha) p 63
[23] Munkres J R 1975 Topology (Englewood Cliffs: Prentice-Hall) p 331
[24] Pontrjagin L 1946 Topological Groups (Princeton; Princeton University Press) p 232
[25] Barut A O and Raczka 1986 Theory of Group Representations and Applications (Singapore: World Scientific) p 130
[26] Barut A O and Raczka 1986 Theory of Group Representations and Applications (Singapore: World Scientific) p 510
[27] Matsushima Y 1972 Differentiable Manifolds (New York: Dekker) p 273
[28] Berberian S K 1965 Measure and Integration (Bronx: Chelsea) p 181
[29] Barut A O and Raczka 1986 Theory of Group Representations and Applications (Singapore: World Scientific) p 70
[30] Erdélyi A (ed) 1953 Higher Transcendental Functions vol 2 (New York: McGraw-Hill) p 188
[31] Erdélyi A (ed) 1953 Higher Transcendental Functions vol 2 (New York: McGraw-Hill) p 193
[32] Ogura H Unpublished
[33] Chacón E, Moshinsky M and Sharp R T 1976 J. Math. Phys. 17668
[34] Chacón E and Moshinsky M 1977 J. Math. Phys. 18870
[35] Gheorghe A, Raduta A A and Ceausesou V 1978 Nucl. Phys. A 296228
[36] Ogura H 1973 Nucl. Phys. A 207161

[^0]: \dagger A proof is given by slightly modifying the proof of theorem 4.4 (p 340) of [19].

