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Abskact. Irreducible unitary representations of the group CM(3), the 'three-dimensional 
collective motion group', which is the semidirect product of a six-dimensional Abelian group 
T, and SL(3, R), are constructed. A countable basis is identified in the carrier space of each 
representation. On each SL(3, W) orbit, elements of the Lie algebra m(3)  are represented as 
differential operators The relationship of the Bohr model and the CM(3) model is discussed. 

1. Introduction 

The CM(3) model [I-51 of nuclei is a microscopic formulation of Bohr's liquid drop 
model [6,7] of nuclear collective quadrupole motion. Consider a nucleus consisting of 
A nucleons. Let x," denote the ith component of the posilion of the nth nucleon in the 
Cartesian coordinate system. Let 

A 

e.-= 9 1 x.x,  i , j = 1 . 2 , 3 .  ( 1 . 1 )  
,,=I 

These quadratic forms are decomposed into the monopole component 
3 

Q o = = f  Qii (1.2) 
i =  I 

and the quadrupole components 

Q:I = ? ( Q 1 3 * i Q d  
Q2 -1 

*2- - Qz2) * i!& 

(1.3) 

The Bohr model assumes that a nucleus is enclosed by a surface 

2 

R = R ~  1 +  c apFzp(O,&))  ( p = - 2  

and the average ( p ( n ) )  of the density operator p(n)=Z$I 6(n-n.)  is 3A/ (4nR; )  if 
In1 <Ro and 0 if In1 > &. If the parameters ap are assumed to be small, the averages 
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of the quadrupole moments are 

H Ogura and D J Rowe 

p = o ,  *I ,  i 2 .  ( 1.4) 

However, these expressions can be derived apart from the above assumptions. Let 
ph be the momentum conjugate to xi. and 

A 

iSjk = i (xlnph + xhph j ,  k= 1,2, 3 j f k  (1.5u) 
" - 1  

A 

iS,=i xhph j =  I ,  2 , 3  
n- I 

(1.56) 

A 

iLk=i (xjnp,-x,pln) (k, f, m is a cyclic permutation of 1.2, 3). ( 1 3 )  

Suppose that IO> denotes the state of a nucleus of angular momentum 0. Although 
(OlQ:lO)=O, the averages of quadrupole moments in the state 

" - 1  

3 

I@>=exp(-i C ; S d l O >  
k-  1 

&ER, are not 0. That is, 

These expressions are derived from the commutation relations 

and the formula 

1 
2! 

e Y x e - Y = x + [ Y , x ] + -  [Y, [ Y,  x]] +. . . . (1.8) 

If we evaluate the mean values of the quadrupole moments in the rotated state I")= 
R(#, 0, w)[@), where R(Q,  0, y )  =exp(-i&) exp(-i0l2) exp(-iyl,), fromequation 
(1.6) and R-'Q;R=Z:=-,  D:v(#, 0, y ) Q : ,  we have 

(We adopt Bohr's D-function Diu($, Q, v)=e'" di,(O) eivy throughout this paper.) 
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Expression (1.9) accords with expression (1.4) in the limit of small deformation. 
We may define the radius RO of the nuclei by (O(Qo(0) = R i A j 5 .  This is because, if the 
density of the nuclei is constant, the formula holds. Let p B = , , / ’ w  and PER 
be a parameter such that mp=mpB. If we set 

and assume that p is small, we have 
q o ( ~ , ) ~ ~ e 2 ~ ’ 3 p c o s  y q2( 4) = 2  e25’3 p sin y. (1.10) 

If we furthermore impose the condition of volume conservation 5 = 0, the right side of 
equation (1.9) becomes the product of A R i m  and the well known expressions [6] 

1 
az=pB DLG, e, y ) c o s Y + - ( D ~ ( ~  0, W)+DL(~, e, w)) sin y ]  (1.11) Jz 

p = o ,  A I ,  &2 
[ 

of the deformation parameters a# .  Thus we may regard I Y) as a deformed state in the 
sense of quantum mechanics. 

However, even if the deformed states are identified, we do not know how the states 
vary as time passes. In the Bohr model, equations of motions for the parameters a, 
are established by assuming that a nuclei is a liquid drop whose motion is governed by 
classical fluid dynamics. In the CM(3) model, we must look for a Hamiltonian which 
is an element of the universal enveloping algebra [SI generated by the operators 
Q,, Sd,  Sk and Lk. If we consider the correspondence of the parameters up and the 
expectation values (YlQiIY), it is plausible to choose a Hamiltonian which accords 
with the Hamiltonian of the Bohr model in the limit of small deformation. Once a 
representation and Hamiltonian are chosen, the remaining problem is to identify a basis 
in the carrier space of the representation so that it becomes possible to diagonalize the 
Hamiltonian. It is the purpose of this article to construct irreducible representations of 
CM(3) and identify bases for the carrier spaces. 

The operators Q,,, isjk, isk and iLk form a real Lie algebra with respect to the 
commutation relation induced from the canonical commutation relations [xj,.,pkn] = 
iSjkS,,,.. Let span{&} denote the vector space generated by some vectors X,. The Lie 
algebra c=span{Q,, i S k ,  iLk} is the semidirect sum [9] of the commutative ideal 
f6=span{Q,} and the subalgebra g=span{i&k,,iSk, iLn}. Denote 4 Sk by So and 
Sk-So by Si,  respectively. Let sg=span{iSjk,iS:, iLk}. Then sg is a subalgebra of g 
and g=sgQspan{&}, where i so  commutes with any element of sg. Since 
CA I c k S k =  (C:= I e k ) s 0 +  zZ= t {k$, removing S O  from g and imposing the condition 
of volume conservation are equivalent. Here, we shall adopt the volume conservation 
condition and consider representations of the Lie algebra cm(3)=t6Qsg. By doing so, 
we can suppress scaling factors which make formulae onerous, do not lose any essential 
content of the theory and, furthermore, incorporating later volume variation by So 
does not cause any difficulty. 

2. Group CM(3) 

In this section, we shall construct a topological group CM(3) of the algebra “3) from 
the following: (i) as is seen from the form of the wavefunction I“), the deformation 
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is generated by exponential functions of the elements of g; (ii) the representations of 
the Lie algebra are obtained from those of the group by differentiation. In general, a 
group generated by an algebra is more connotative. We need some additional 
assumptions to make a group of an algebra. 

Instead of defining the domain and the range of the elements of cm(3) in a Hilbert 
space, we shall proceed formally. For K = ( K " ,  K I ~ ,  K ' ~ ,  K U ,  ~ 2 3 ,  K , , ) E W ~ ,  let U,= 
exp(iZiq K ~ Q ~ ) ,  where th6 exponential is defined by the formal power series whose 
fust term is the 'identity' I. Since as commute mutually, U,Ur,= U=+,. for K ,  K ' E W * .  
Let O=(O,O,O,O,O,O).  As UOU,=U,UO=U,, UO=I .  From UeU-r=I ,  we have 
U;'=U- If we define an &-neighbourhood of U, by B(U,, E ) =  

{ U x , l J w <  E } ,  then the collection T,= {UK I K E R ~ }  becomes a six-dimen- 
sional Abelian group which is homeomorphic to Ut6. 

Next we shall make a group of the Lie algebra sg and make it homoeomorphic to 
SL(3,W). Let X j ~ = i ~ ~ . " c I . r j , p m , i , k = 1 , 2 , 3 .  Then g=span{Xjjli,j=1,2,3}. Let E,i 
denote the matrix unit of 3 X 3 matrices whose (iJ] component is 1 and the other 
components are 0. A linear map /z:g +g/(3, W) defined by / t ( X v ) =  -E,, is an isomorph- 
ism, and so is the restriction / z l s g : s g + s / ( 3 ,  88). 

The Lie algebra d (3 ,  W) generates the group SL(3, R)=  ( g s g l ( 3 ,  W)ldet g= I ) .  
However, the isomorphism of sg and d ( 3 ,  W) does not apriori imply the homeomorph- 
ism of SL(3, R) and a group generated by sg. Let ll&l\ denote the Euclidean norm 

of ~ e g l ( 3 ,  W). Usually d ( 3 ,  W) and SL(3, W) aregiven the subspace topol- 
ogy of R9 induced by the Euclidean metric d(u,/3)=lla-flll, where a, p d ( 3 ,  W) or 
a, psSL(3, W). In that topology, d(3 ,  W)sRwB, where '1' means 'be homeomorphic 
to'. 

If & ~ s l ( 3 ,  R), the exponential series exp(&)=Z?=,, &"/n! belongs to SL(3, 88). Let 0 
and I denote zero and the identity of d(3 ,  R) and SL(3, R), respectively. Let 
B ( O , l o g 2 ) = { s s s l ( 3 , W ) I  II&][<:log2} and W=(exp&I&sB(O,log2)}. Then W i s  a 
neighbourhood of IsSL(3,  R). On a; the logarithmic series logg=X,"., (I-g)n,/n 
absolutely converges, and it holds that [ I O ]  exp(1ogg) =g. Since exp B(0, log 2) and its 
inverse log1 Ware continuous, B(0, log 2) is homeomorphic to W. 

As CY-' = {iv-' I W E  W} = W. anygaSL(3, R) can be represented iproduct of finitely 
many elements [ 1 I ]  of W, that is, g=g l  . . . g. for some non-negative integer n and 
some gl , . . . , g.E W. If g j s  W, E, = log g, belongs to B(0, log 2 )  and therefore 

H Ogura and D J Rowc 

g =  exp( cl) . . . exp( 6.) (2.1) 

for some cl,. . . , E , E B ( O ,  log2). 
For E = ( E ~ ) E s / ( ~ ,  W) let 

3 

be a formal power series. Then Uo= I and U;'= U&.. Let 

w;= { U,, . . . U,] E l , .  . . , E " E S I ( 3 ,  R)}. 

Then SG = U?- I Mf becomes a group. 
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From the commutation relation 

Eyx j~ ,  Xh]= EkjXp i = l , 2 , 3  n=1,2, .  . . , A L;' i = l  

and formula (1.8). we have 
3 

u&,nu~'= [eXP(-ET)lj$,,z i= 1, 2,3 n = 1 , 2  ,..., A .  (2.2) 
j= I 

Let $ denote this map U,-+exp(-&'). Then the map $:SG+SL(3, R) satisfies 
$ ( U e U S ~ ) = $ ( U J $ ( U d ) .  Also it is surjective. The reason for this is, givengcSL(3, W), 
g=exp(al). . .exp(&J for some h l , .  . . , E,EB(O, log2) and 

Let Ker $ denote the kernel of $. The kernel is not a one-point set. For example, 
elements exp(2mn iL& where k =  1,2,3 and mch, belong to Ker $. By the homo- 
morphism theorem of group theory, SG,'Ker $ is isomorphic to SL(3, R). Let denote 
this isomorphism. If we define y-'( V )  is open in SG/Ker $ if and only if Vis open in 
SL(3, R), then SG/Ker $ becomes homeomorphic to SL(3, R). We hereafter denote 
SG/Ker $ by SL(3, W). 

For g=exp(cl). . . exp(&.), denote the residue class of t7-d.. . U-,;cSG by U,. 
Also denote (gT)-' = (g-')' and its (i ,])  component by g* and g$ , respectively. Then 
by equation (2.2) and the definition (1.1) of Q,,. for aeSL(3, W), 

. U-,;)=g. 

(2.3) 

where 

Akl,&) =aGf +aEC i fk<1  

Am,# =a$,&. 

By straightforward calculation, the determinant of the 6 x 6 matrix (Axjj,(a)) is shown 
to be (det a)-4, which is 1 for det a= 1. If we arrange Qgs in the form of a 3 x 3 
symmetric matrix, 

Q I I  Q12 QI, 

Qn Q23 Q33 

and denote a-]Q(a-')' by a-' . Q then equation (2.3) can be written as 

(2.4) 

Q'=u#Qu,-'=a-'. Q. (2.5) 

Now, thecollection CM(3)= {U,U,l LIW€T6, U&SL(3, R)} isshown to be thesemi- 
direct product group T65SL(3. W). In fact, I=UOUI is the identity. For s6R6 and 
aeSL(3,R), let a .  K be defined by 2k.,Ag,k,(a)skI. Then UIU,U:'=U,.,~T6. 
Therefore UilU;'= U-KI.  .Ui1sCM(3) is the inverse of UrUo and U~UoUKl,.U.,= 
u~(u,u,~u,-')u.u,= U,.,,. Ku*,€ CM(3). 
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Since det(AOkj(a)) is not 0, the linear map K #  + CkSI Avk,(n)Kkj is an automorphism 
of R6= { ( K ~ , ,  . . . , ~ 3 ) ) ) .  Thus CM(3). a subspace of R6 x R9, is a semidirect product 
[I21 of T6 and SL(3, R). 

3. SL(3, R) orbits in R6 and the isotropy subgroups 

Since T6 is Abelian, its irreducible representations are one dimensional. For Ur€  T6, 

the map x g :  U,  +exp(i C j G ~ e Q $ )  is the representation labelled by Q =  
. . , a3)sR6 .  As usual, we give R6 the standard topology. In the bra-ket 

formalism [ 131, if we denote by IQ)= I Qi,, Qi2,. . . , Qi3) the simultaneous eigenstate 
of Qps, then 

U K l  Q)=x!Z(Ur)lQ) (3.1) 
and {IQ)} is the one-dimensional carrier space. If we operate with equation (2.3) on 
IQ), then 

U~Q, 0.2 €9 = Q;I Q )  Q; = Ak,O(a)QLI=(a-’ . Q)@ (3.2) 
kLI  

where Q denotes the matrix of the form of equation (2.4) whose components are real 
numbers. Since QLs are c-numbers, 

(3.3) e, U.-’IQ)= QB K’I e.) 
which implies that U;’ I Q )  is the eigenstate of the quadrupole moments Qs belonging 
to the eigenvalues Q; . That is, 

U,-’lQ)=cl Q )  Q=.-‘. Q (3.4) 

where cis a function of asSL(3, R) and Q ,  which will be suitably chosen in section 6. 
Equation (3.4) shows that U,eSL(3, R) connects carrier spaces of the representations 
of T,. However, not arbitrary IQ) and I Q )  are connected by some U.,. 

If we define a relation by 

g-Q if Q=aQa’=a. Q for some a e ~ ~ ( 3 ,  R) 

this relation is an equivalence relation. On each equivalence class, called an orbit, 
SL(3, R) acts transitively. We shall list below all of these orbits. We hereafter denote 
the eigenvalues of the quadrupole moments by Q,,, so far as no confusion arises. If 
det Q#det Q then Q and Q belong to different orbits. Let 

h={diag(Al, &, I , ) l d I t i > 0 , 1 , ~ 1 9 = l } c S L ( 3 , R ) .  

Since QeR6 isa real symmetric matrk, there exist A E A  and reSO(3) such that (rA)TQrI 
is equal to one of the following matrices: 

?Jdiag(l, 1, 1) ftldiag(-I, -1, I )  (3.5) 
where l=ldet Ql’”#O, 

fdiag(1, 1,0) diag(l,-l,O) fdiag(0, 0, 1) O=diag(O, 0,O). (3.6) 

That is, any Q is equivalent to one of the above matrices. Furthermore, by Sylvester’s 
law of inertia [14], matrices given in equations (3.5) and (3.6) are non-equivalent, 



{(m;O -s;O ;) M(2)= s in0  cos0  b ] a,b ,  0eR 

{(CO: r sin; 7 ;) K,= s inhr  coshr  b } a , b , r ~ R  



S,4(2)={(c a b 0  d 
X Y l  

4. Fundamental Groups of SL(3, R) orbits 

In order to discriminate the structures of the SL(3, W) orbits, we consider their connec- 
tivity. I t  is known that S: is homeomorphic [I81 to R’={Xeg1(3, R)lX=X’, TrX= 
0). That is, S: is simply connected. Let Sand  0 be one of the SL(3, R) orbits and its 
origin. If Q E S ,  then Q=rh’OrT, where I=(e5’,  e5’,et3), t i e R  and 51+52+(]=0. For 
te [O,  I], let A(f)=(e‘51, el5: erE3) and Q(t)=rA.(t)’OrT. Then Q(f ) ,  ta[O, I] is a strong 
deformation retraction [I91 of S and M =  { Q = r O r T I r ~ S 0 ( 3 ) } .  The fundamental 
groups of S and M are isomorphic 1191. 

First we take up S,? . Let 

cos @ -sin@ 0 cos 6’ 0 sin 0 

-sin 6’ 0 cos 8 
,*(+)=(,si;@ co;@ ;) g(o)=( 0 1 0 ). 

Then any reSO(3) is represented by the product h($)g(B)h(y) ,  where @, y e R  mod 27r 
and 8s[O, z]. The strong deformation retract of S,? is M s =  { r  diag(0, 0,  I ) vT l r~S0(3 ) } .  
I f  Q e M S ,  then Q=h(@)g(B)diag(O,O, I)gT(8)kT($). Let xl=sin 8cos$,x2= 
sin 8 sin @, x3=cos 6’. Then the ( i , j )  component gf of Q is x,x,. Therefore, Ms is the 
image set of the mapf:S2 + R6 defined byf (x l ,x2 ,~3)~=x~x, .  According as q l l # O ,  
%2#0 and q13Z0, we can take ( q d q l l ,  q d q ~ ~ ) ,  (411/422,q23/q22) and (qI3h33, q23/ 
9,)) as local coordinates of M s .  Coordinate transformation functions are infinitely many 
times continuously differentiable. 

By the mapf; points (xI, x2, .q) and (-xI, -xz, -x3) of Sz are mapped to the same 
point o f  Ms. Conversely, f - ’ ( Q )  consist of two points. For example, suppose that 

O ) ~ , ~ . ~ , b , i . d e l . a d - b c = l  

a b 0  

0 0 1  
SL(2, R) = { ( c  d 0 )  a, b, c, dsR, ad-bc= 1 
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Thus, Ms is a set consisting of  the pairs of antipodal points of S2. However, in order 
to infer that M 3  is the two-dimensional projective space P 2 ,  we need to show that the 
quotient topology [20] of M s  induced byfis the same as the given topology. It suffices 
to show that/: Sf + W6 is an open map. Let Y be a subset of M S  such that U=f-'( V )  
is open. Let Q6 Yand xa/-'(Q). Since U is open. there exist a neighbourhood Ec U 
of x. As is seen from equation (4.l), if E is chosen sufficiently small then xaE, -x#E,  
the restrictionflE: E -./(E) is bijective and (fl  E)-' is continuous. 

Therefore, ( ( / l E ) - ' ) - ' ( E )  = / ( E )  is open. Then f(E)c V is a neighbourhood of 
QE V.  Thus Vis open. The fundamental group of P 2  is the two-point group. Thus, Ms 
and therefore S: are doubly connected. 

Strong deformation retracts of S: and S: are M 2 =  {rdiag(-I, -1, l)rTIrsSO(3)} 
and M 3 = { r  diag(1, 1, O)rTIr6S0(3)},  respectively. Because diag(-1- 1, I ) =  
- I t  2 diag(0, 0, I )  and diag(1, 1,O) = I-diag(O,O, I), M2 and M 3  are homeomorphic 
to P 2 .  Thus, all of S,', S: and S; are doubly connected. 

The structure of S, is more complicated. Letf:SO(3) + W6 be the map defined by 
f(r)=rdiag(l. -l,O)rT. Then M4=/(SO(3)). Let D,={I. C,, C,, C:} be the dihedral 
group consisting of the identity and n-rotations about the n , y ,  i axes. If CaD2 then 
f ( r C ) = f ( r ) .  Conversely, iff(rC)=f(r) for CeSO(3)  then CE&. This is shown by 
solving the equation Cdiag(1, -1. O)CT=diag(l, -1 ,O) ,  CeSO(3). Thus, M4 is the 
quotient set S O ( 3 ) / D 2 .  First we shall show that M4 is a three-dimensional manifold 
embedded in W6. Let A, denote the (i. j )  cofactor of det Q. Since the eigenvalues of 
QaM, are I ,  - l , O ,  

3 
/ I !  (Q) = Tr Q = 0 h2(Q)=  1 A , , + I = O  h3(Q)=det Q = O .  

,=I 

IfWEdefineh: W6 + W3 byh(Q)=(hl(Q),h,(Q),k3(Q)), then Md=h-'(O). Thederivative 
of h at Q is 

0 0 1 0 1 
d h p  -411 -%I, -2913 -922 -2q23 -933) r A I ,  2A12 2A13 A22 ?-A23 A33 

where k, , h2,  h, and q, , ,  q22, . . . , qS3 are arranged vertically and horizontally, respec- 
tively. By elementary linear algebra. the rank of dh, is shown to be 3. Therefore, M4 
is a three-dimensional subspace [21] of R6, and three of the q l l ,  q 2 2 , .  . . , q33 serve as 
local coordinates. 

Although we do not write down the Iengthy algebraic expressions off-'(Q), it is 
shown that if r c f - ' ( Q ) .  thenf-'(Q)= {r ,  rC,, rC,., rCIJ. In the same way as above,/ 
can be shown to be an open map, and consequently SO(3)/D2 in the quotient topology 
is homeomorphic to M4. 

Let Ad: SU(2) + SO(3) be the adjoint representation [22] of SU(2). Letp=/, Ad. 
Thenp: SU(2) 4 M ,  is shown to be an open and covering map [23]. Let &= Ad-'(D2), 
then 

1 0  O i  
1 0  0 -i 
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Since M 4 ~ S O ( 3 ) / D z ~ S U ( 2 ) / ~ z ,  and SU(2) is simply connected, the fundamental 
group of M4 is isomorphic [24]t to 6 2 .  Thus M4, and therefore S,, is an eight-fold 
connected space. In conclusion, except for the possibility that S: and S: are homeomor- 
phic, all orbits S:, S;, S:, S,, S; are not mutually homeomorphic. 

H Ogura and D J Rowe 

5. Measures on SL(3, R) orbits 

Suppose that S is a k-dimensional surface in R6 and ( a l , .  . . , ax) + QES is its para- 
metrization (differentiable surjection). Set xI =ell, XZ=$QIZ, I,=&$,. x.,= QZZ, 

x5 = and x6 = Qs. Then the measure on S induced by the Euclidean norm 
I l Q l l = m = m ,  is 

dp(Q)=JqKTq i , c . . . < j r  a ( a l ,  ..., ax) d o , .  . .dak .  (5.1) 

With the aid of this formula, we can calculate the measures on any SL(3, R) orbit. We 
shall suppress numeral factors of the measures which are absorbed in the normalization 
of wavefunctions. 

Let r ($ ,  8, v)=h($)g(O)h(y)~S0(3). If Q E S ; ,  then Q($, 8,  v ) =  
r($, 8, y )  diag(O,O, v)rT(q5, 0, y)=h($)g(8) diag(O,O, v)gT(0)IiT($), where VSR'. 
We can take v ,  8, q5 as parameters of the orbit S;. By equation (5.1), 

dp5(Q) = vz dv sin 0 d8 dQ. 

a$, 8, v,  a , ,  d2) = r ( h  0, bv) diag(Al, +a2, ohT($, e, a) 

(5.2) 
If QE$ or S4, then 

a,, &ER+. 

According as QeS: or QES,, equation (5.1) implies that 

dp3(Q)=&&IAi-A22,1 dlt  dA2siu 8 d 8 d b d y  (5.3) 

dp4(Q)=Al&(Al+A2)dAl d&sin 8d8dq5dy. (5.4) 
The measures (5.2). (5.3) and (5.4) are quasi-invariant [25]. 

If QeS: or QES:, then 

e($, e, 1. A ] ,  dz, A3)=r(q5, 8, v )  dag(fAt, *az, a3)rT(6. 8, y )  

a,, L A ~ E R +  aIA2A,= I 
and Tr Q-2=Z,%l l /A?. If we introduce two independent variables eo, E ~ E R  such that 
I ,  =exp[2(sz/& EO/.&)], A2=exp[2(-e2/$- E ~ / & ) ] ,  1 , = e x p ( 2 m ~ ~ ) ,  then, 
according as QES: or QES:, quasi-invariant measures calculated from formula (5.1) 
are 

dp I (  Q) = I AI -&I I&- 1,1 [ A ,  - all deo dEz sin 8 d8  dq5 d y 

dpz(Q) =-I& -Azl(A2+ A,)(A, t A,) d q  dez sin 8 d8 dq5 d y.  

However, on S: and S;, there exist invariant measures induced from the measure 
dV=dr,  dx2. . , dxa of d. The group GL'(3, R) is the direct product 88' x SL(3. W), 

t A proof is given by slightly modifying the proof of theorem 4.4 (p 340) of [ 191 
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and V:= LJM ST(/), where i= I ,  2, are GL'(3, W) orbits in R6. On V: and V:, the 
measure dV=dx, dx2.  . . dx6 takes the form 

do:( e)= 151& - &I 1 1 2  - A31 I& - 1 1 1  d/dca d&2 sin e dB d$ d y 

d d  (Q)=151Ai -&I ( 1 2  +&)(&+A,)  dl  dco d82 sin 0 dB d$ d y 

respectively. These measures are invariant under the action of SL(3 ,  W). This is because. 
if Q=aQaTforac-SL(3, R) thend(Qi,, . . . , Qi3)/d(QII,. . . , Q33)=(deta)4= I .  Since 
13=detQ and det Q is invariant under the action of SL(3, W), dpi(Q)= 
dv:(Q)/dd,=, , i =  1,2, are invariant measures on S: and S: . They are of the form 

d p  I (e) = I al -&I I a, - a3i I a3 - al I dco dcz sin e d e  d$ d y 

dpz(Q)=lAi -&I(&+ A3)(&+1,) dcO dE2 sin 0 dB d$ d y .  

(5.5) 

(5.6) 

6. Induced unitary representations of CM(3) 

The method of constructing irreducible unitary representations of such a semidirect 
product group as CM(3)  is well known [26]. Let S be one of the SL(3 ,  R) orbits whose 
origin is 0, and K is the isotropy subgroup. Then S is diffeomorphic [27] to SL(3 ,  W)/  
K. Let HL be the carrier space of an irreducible unitary representation of K labelled 
by L and { I  r)} be an orthonormal basis for HL. Let Lk: H L  -+ HL be the representation 
of kEK. Then 

~ ~ l ~ ) = E % d k ) l ~ ' )  (6.1) 
f 

where (aC,Jk)) is the representation matrix. 
ForQeS,chooseanelementgQeSL(3, W) such that Q = g Q '  0,Thewayofchoosing 

gQ is not unique. However, it suffices that the collection Es= (gel Qc-S) becomes a 
Borel set [28,29] in SL(3 ,  W). Since SL(3, R)eR9 is locally compact (cf [19], p 186, 
corollary 8.3),  il is equipped with the O-ring consisting of Borel sets, and for each orbit 
S we can concretely choose gQ so that Bs becomes a Borel set. The map Q -+gQ is, in 
general, neither differentiable nor continuous. Given g e S L ( 3 ,  W), let Q = g .  0 and 
g e e &  be the element such that Q = g e .  0, then k,=g;'g belongs to K.  The decomposi- 
tion g = g &  is called the Mackey decomposition [29]. We denote the map g + k p  by 
0. Since the map Q + g Q  is not continuous, neither is the map ~ : g  + k g .  

Let p be the invariant or a quasi-invariant measure on S. If we choose 
c= ,/dp(g-'Q)/dp(Q) in equation (3 .4) ,  then it holds that the completeness relation 

l = s  l Q ) W Q ) t Q l = ~  I Q > d p ( Q ) < Q l .  
S S 

Let dp2(S, p, H') be the set consisting of square integrable functionsf:S -+ H L .  That 
is, i f f e P ( S ,  p, NL), 

f(Q) = C fz(Q)lr) 
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For Q E S  let Q = g Q .  0, where gas&.  Given gO€SL(3 ,  W) let 
Q =g;' . Q, g ,  =g;'gQ and g ,  =gQks, be the Mackey decomposition of g l  . Now, for 
U&SL(3, R), define a linear map p( Use): Y2(S, p, H L, + T2(S, p, H L )  by 

Then p(U,) is a strongly continuous unitary representation of U,. Note that g - k p  
is not continuous and therefore g -+ 9%..,(ks) is not continuous, hut Ugo -+ p(U,,) is 
continuous. That is, even if g -+ BrZ,(ks) is not continuous, if Ilgo-foll is sufficiently 
small 19ir,(ks,) -Brr.(kg,)l  becomes arbitrary smaU for k8, = a(g;'ga) and 
kt, = d&'ga) .  Finally, for U, UZe CM(3)  if we define 

p ( u , U l ) : Y 2 ( S , p , N L ) - - , Y 2 ( S , p , H L )  

by 

( p( U= Us) f HQ) = xe( U,)( Pf Uz)J)(Q) 

then UxUz - p(U,C',) is an irreducible unitary representation of CM(3) .  
If L is the trivial representation of K, then equation (6.2) becomes 

and Y 2 ( p ,  S, NL) becomes Y 2 ( S ,  p)= {RS- @[I, I flQ)I2 dp(Q)<+m). As 
pr I fr(Q)12 dp(Q)< fa, obviouslyf,~Y~(S, p). Therefore, if {u,(Q)} is a basis for 
Y 2 ( S ,  p), then {un(Q)@lr)} serves as a basis for T2(S, p, 17'). 

7. Basis for 9 2 ( S ,  p )  

Let us introduce some basis for Y2(S,  p) by considering the structure of S. First we 
note that if/:X --, Y is a homeomorphism, ps and p are quasi-invariant measures on 
X and Y,  respectively and {&(x)} is a basis for g 2 ( X ,  pX), then the collection of vn( y )  
defined by 

Y =fW E y X = f - ' ( y ) E X  

serves as a basis for Z2( I: p y ) .  Also, we shall make use of the fact that if g : X  + Y is 
a surjection and h :  X --, @ is constant on the inverse image g- ' ( y )  of ye  Y, then h can 
be regarded as a function on Y. 
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7.1. Basis for Y,?(ST, p5) 

If QES:, then Q=vB.  where veR' and B E M ~ z F .  The map (v,Q)-+v&S: is 
continuous. Also, the inverse of the map is continuous. Because, for QeS;, v=Tr Q 
and e = Q / v  arecontinuous. T h u s S : z R ' x p .  Let dpK+(v)=e-"dv.  Then Laguerre 
polynomials [30] Ln(v) =e" d"(e-" vn)/dv", satisfying the orthogonality 

LA v ) L ,  dp W '  ( v )  = ( n  !)*S,,. 

are complete in Y'(R+, p n ~ * ) .  Spherical harmonics Yft,,(O, 6) are complete in 
Lf2(s", p*), where dp$(0, $)=sin 0 d 0  d@. Functions on S2 which take the same value 
on a pair of antipodal points can be regarded as functions on P' (cf equation (4.1)). 
As Yfvn(n-O, $+n)=(-l)fY, ,w(e,  $), the set ',Y,,.Ileven} is complete in Lf2(p,p$). 
The difference of the measures dps(Q) and dpn+(v)dp$(O, 9) is compensated by 
merely multiplying L n ( v )  Y,,,,(e, 4) by e-"l2/v. Thus, 

v )  Y d  e,  $)In N, I even} { (e-"/2/ 

is an orthogonal basis for Z2(S;, p s ) .  
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g 3 ( k ( @ ) ,  0, P) does not belong to f 3 .  We shall consider functions from 
SO(2) x [0, n] x f 3  to C ,  which are constant on f Y ' ( Q ) .  

First we show that f 3 g R 2 .  Let pr, denote the (Lj) component of P= 
h(w) diag(e", e-', O)kT(p)~f3. Then 
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u=pl l  +pu= (e'+e-? ~ = p ~ ~ - p ~ ~ = ( e ~ - e - 9 c o s 2 ~  

~ = 2 p , ~ = ( e " - e - 9  sin2ly (7.1) 

and the other components of P are 0. Since u2- ( (v2td)=4 and u>O, 23 is a sheet 
of the hyperboloid of two sheets. The projection (U. U, w)+(u, w )  and its inverse 
(U, w) +(,/-, U, it,) are differentiable, and consequently f 3 = R 2 .  

Let H.(u) denote a Hermite polynomial [31]. Then 

{exp[-(u2+w2)/2]N,(v)ll~(ir,)In.m=0, 1,2, ... } 

is complete in Y 2 ( R 2 ,  pnz) ,  where dp.i(u, w) =do dui. However, it is more convenient 
to adopt their linear combinations 

c , , ,~f , , , (~)  Ifn( w )  = exp[ - ( U' + iti2)/2] L ~ ' ( u '  + w2) (U + i I V ) ~  i f k 2 0  

=exp[-(u2+ w2)/2]~y'(v2+ id)(v- iw)-' ifk<O 

where Ly' is the Laguerre polynomial [30], k an integer and j a non-negative integer. 
Substituting p cos 2ly and p sin 2ly, where p =  (e"-e-?, for U and w respectively, u'e 
have basis functions 

$,,J p, v) = e-P'!2 plklLyI( p') e*w (7.2) 

well defined on &. The function &(p, p) is invariant under the transformation 
(p, ly)-(-p, p*a/2) .  This invariance arises from 6( U / )  diag(e", e-', O)hT(ly) = 
h(ly& n/2) diag(e-', e', 0)hT(byfa/2). In this parametrization of (U, w )  by (p,  ly) any 
function on must satisfy the invariance. Therefore, 

2 x i  a/2 Io -_ p d o i ~ 2 ~ d y , R P . l y ) = i x p d p i  0 an12 d v F ( p , w )  

=Jn-PdPJn2KdvflP>w) 

and consequently, in  equation (7.2), we may restrict the domain of p to [0, -a). 
Forh(@)~S0(2) ,  letzl=eim.Then theset {zC"dtr(0)IJ=O, I , .  . . , W = - J , .  . . , J}, 

where K is arbitrarily chosen for each J, is complete in the space of square integrable 
functions on SO(2) x [0, a]. Therefore, {$,&(p. ly$' dLK(0)} is complete in the space 
of square integrable functions on SO(2) x [0, n] x XI. 

Now, if 0e(O, a )  and Q = f 3 ( h ( $ ,  0, P) then f ; ' (Q)  consists of two points 
( ; I (@),  0 , P )  and (h($+n),  ~ - 0 , g ( a ) P g ( n ) ) .  Since g(n)hdiag(ec,e-c,O)hTg(g(n)= 
hT diag(e', e-', O ) h ,  if the value of function 4,,k at Pis  #,,k( p, p), its value at g(n)Pg(n) 
is $,,!A P. - w). Also, e i U ( 4 + X I d '  

MK( a - 0) = (-I)' eiM@ dk.-K(0). Therefore, 

ly(Q)=e-p2'2 plk'L.''(p2) efM'(dLA,(0) e2kv+ (-l)'dL,-K(0) (7.3) 
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is well defined on 33-,f3. We shall extend the domain of this function to g3. For 
Q€5-f3, lime-o., Q belongs to f3 .  On the other hand, 

lim v(~)=e-$/Z P1*l~j*l(PZ)(~MKei~+ e2W+(-1)J6 M . - K ~  -W e -2ikv ). 
e-o 

The limit lime,o y(Q) becomes a function on f3  if and only if K = X .  This is because, 
if and only if K=Zk, lime+o y(Q) is a function of h ( 4 ) h ( y ) ~ S O ( 2 )  and is a linear 
combination of the functions given in equation (7.2). Also, if K=Zk, 

1 fim v ( ~ )  =e-$/2plLl~iLl(P2)((_1)Js M.-Ke -iW+ - v i  + aMK 
e-s  

which is a function of h(#)h-'(y)eSO(Z),  and well defined on 8,. 

- 11 

Let y = { n , j , J , M , X } ,  r = { y )  and 

Y,(Q)=L.(v) e - " / 2 p ' " L ~ ' ( p 2 ) ( D ~ . ~ ( # ,  e, yj+(-i)'&,-d#, e, v)). (7.4) 

In the variables p and v, 

Therefore, { m ~ - ~ e - " ' ~  yy(Q)) lysr}  is a basis for Yz(S:, p3) .  

7.3. Bask for Sf2(S4, &) 

A basis for U2(S4 ,  p4) can be identified in the same way as above. If QsS4, then Q= 
vr diag(e'-e-", O)rT, where V S R " ,  E E W  and rsSO(3). Therefore, S4 is a Cartesian 
product of Wi and &={rdiag(e", -e-",O)rTlrsSO(3), ER}. Let f4= 
{ h  diag(e', -e-', O)hTIheSO(Z), ER}. If P d 4 ,  then 

u = p I  I +p22=(ec-e-c) U =pI I -p7' = (e'+ e-") cos 2 1  

w=2pI2=(eh+e-') sin 2y (7.5) 

and the other components of P are 0. Since U'+ w2-z?=4, ,f4 is the hyperboloid of 
one sheet, which is diffeomotphic to WxS', S'={(nl,n2j1~i:+n:=l}. This is because 
both U, U, w) +(U, U/-, w / V ) e W  x S' and (U, n l ,  nz)  + (U, m n , ,  
A n , )  E& are differentiable. Therefore, the collection of functions 
e-""' H,,,(u) e2av serves as a basis for the space of square integrable functions on f4. 
If we make 

V,(Q) = L ( V )  H , ~ ( U ) ( L & , A ~ ,  e, v) + (- I ) ' D ~ . - ~ ( # ,  e, v)) 
where y =  (n ,  m, J ,  M, 21, then the collection { ~ - ~ e - " / '  y, (Q) lysr }  becomes a basis 
for 9W4, p4). 

7.4. Basis for YP'(S:,  p2)  

We shall show that Si' is homeomorphic to S: and infer that the collection of the 
functions of the form (7.4) also serves as a basis for 2 " ( S ~ , p z ) .  Let 
f2:SO(2)  x [0, TJ x SO(2) x R+'- 5'2 and h : S O ( 2 )  x [0, x ]  x SO(2) x W 2  -+ S: be 
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defined by 

H Ogura and D J R o w  

m$), 8, w), AI, &) 

mw, e, h w ,  

= h ( $ ) g ( e ) h ( Y )  diag(-&, -a2. i i i laz )hT(W)gT(o)hT($) ,  

= k ( $ ) g ( e ) / l ( v )  diag(h, ,I2, o)hT(y)gT(0)hTt$).  

Let 

X2={hdiag(-A1, -122, I/dld2)hT[hsSO(2)} 

X 3  = { h diag(&, L , 0)/zT~heS0(2)}. 

Then if and only if B = O  or x,f,(h($), e , h ( y ) , b l ,  A2)eX2 and 
&/I($),  @,/z(y),  121,2.2)EX3. Also, if 0 = 0  or a,  then fz and fi depend on 
h(Q) ,  / t (y )~SO(2)  through the product h($ )h (y )  or /r($)h-'(y). 

If 

P 3 = h ( y )  diag(&, 1 2 ,  0 ) h T ( y ) s X 3  

P ~ = ~ ( w )  diag(-&, -&, 1/a,a2)hT(~)~x2 
and 

then 

1. (: : :1 ( 0 0 l/(PlIP*z-P:2) 

-PI1 -PI2 0 
P3= P I 2  P22 0 p2= -p12 -p22 0 

Since the map P2 + P3 and its inverse are continuous, X 2 r X 3 .  Let q1  denote the 
homeomorphism from X 2  to X 3 .  Obviously 

q 2 :  SO(2) x [O, IT] x x2 -t SO(2) x [O, n] x x3 

defined by 

tlz(w, e, P ~ ) = U I ( + ) ,  e,  tll(m 

is a homeomorphism. 
Now, if we define gZ:SO(2) x [0, a] x X 2  -t S: and g , :  SO(2) x [0,  a] x X 3  -t S: by 

then both o f [ = g 3 .  q 2 .  g? and C=gz. qZ' . vi' g i '  become well defined continuous 
maps whose compositions 5. rand  <. [ are identities. Therefore S:=S:. If we adopt 
the variables v=&& and p = & % - m  instead of c0 and E ~ ,  the invariant 
measure on S: becomes 

g2(h(+).  e, p2) = k ( $ ) g ( e ) ~ ~ ~ ( e ~ ~ ~ ( + )  and g,(/z($), e,  p 2 )  =h($ )g (o )p3gT(o)hT($) ,  

Therefore, if y,(Q) is given by the right side of equation (7.4), the collection 
{ e - " " ( ~ / ~ v 2 +  ~ - ~ + J p ' + 4 ) y ~ ( Q ) l r ~ r }  is an orthogonal basis for 
Y2(S2+, Pz). 
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7.5. Basis for Z'(S:, p,)  

Finally we shall identify a basis for Z 2 ( S : , p , ) .  Let s= ( A ~ s 1 ( 3 ,  IW)IA=Ar} be the 
subspace of d ( 3 ,  IW)=R8. Let E be the two-dimensional subspace of szR5 consisting 
of diagonal matrices. Then exp:E + A is a diffeomorphism. If QeS;,  then Q = r l Z r T ,  
where I s A  and rsSO(3) .  Since I=exp( 5 )  for a unique ~ E E ,  Q = r  exp(<)r'=exp(U)), 
where A=r<rT6s. Any A E S  can be represented in the form r(rT for some ~ E E  and 
r ~ S 0 ( 3 ) .  The map exp:s + S: defined by the matrix power series is a diffeomorphism 
[32]. Therefore, any basis for Y2(R5, paas) becomes a basis for Y2(S:,  pl), if the differ- 
ence o f  the invariant measures is suitably adjusted. However, in order to show the 
relation of the CM(3)  model and the Bohr model, we will explain some detail. 

Let 

-l/& 0 0 
&=( 0 -I/$ 0 

0 o m  
0 ri 

Then, these matrices form an orthonormal basis fors with respect to the scalar product 
(E , ,  E,) =Tr E,&. If Q =  (e,) is a 3 x 3 real symmetric matrix, then 

2 

Q=Q'I+ c Q:E, 
"=-Z 

(7.6) 

where Qo and Q,s are expressions given by equations (1.2) and (1.3).  The matrices E, 
transform under the action of r=h(~)g(B)h(y l )ES0(3) ,  as 

2 

r E / =  C D $ ( h  0, Wy. (7.7) 

Now, if AES then A=r5rT, for some 5 6 3  and reSO(3) .  Since { E o , ( E ~ + E - l ) /  
$} isabasisfors,  5 = ~ a E ~ + ~ ~ ( E ~ + E - ~ ) / $ f o r s o m e  so, EZER. Therefore, any A E S  
is the linear combination E:=-, a&,, whose coefficients are 

av = E ~ D : . ~ ( # ,  0, w) +z [G,A~+ 0, v) + DL~(&, 0, V)I p =0, A l ,  +2. (7.8) 

This expression is essentially the same as expression (1.11). Thus, Rs= {a,} of the Bohr 
model is the tangent space of S: at the origin. 

"= -2  

4 

The Euclidean measure I'l:=-* da, on s is, apart from the numeral factors, 

(7.9) 
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On the other hand, if we substitute p cos y and p sin y for c0 and &2 in equation ( 5 . 5 ) ,  
respectively, we have 

H Ogura and D J Rowe 

pdpdysinOdc#dv.  (7.10) 

Let y m ( p ,  y ,  6, 0, y) denote the eigenfunction [33-351 of the five-dimensional har- 
monic oscillator, where o denotes a set of quantum numbers. Let IL= {o}. Then 
{y&3, y. 6, 0, w)lwcSl} is a basis for -Yz(s ,ps ) .  Therefore, 

Serve as a basis for -Yz(S:,pI). As is desired from limp+o Q=I+2A, limo+odpdQ) 
is proportional to dp,(A). 

8. Representation of crn(3) 

Let S, 0, K and k denote an SL(3, R) orbit, its origin, the isotropy subgroup and the 
Lie algebra of K. Let .2ecn1(3) and U,=eGz. The map 2 --f o(& defined by 

is a representation of 4 3 ) .  Since 

p(e"*')f(Q) = e"hf( Q) 

a(QG)= Qb . For f s s g ,  the left side of equation (8.1) can be calculated with equation 
(6.2). We denote by the element ofsg which is mapped to Zsd(3, R) by the isomotph- 
ism hlsg:sg -, d ( 3 ,  R). 

Let 

0 0 1  0 -I 0 

Then {Ai,E, l i=1,2,3,p=0,f l ,12} isabasisfors1(3,R).Insomestepofcalcula- 
tion, it is convenient to use real slmmetric matrices 

& = ( y  : :) 
0 0 0  0 0 1  

Biz(: y A) 
0 1 0  0 0  
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instead of E+2 and E*I. Let Zl=(BI-Al) and Zz=(B2+A2). By means of those 
matrices, the Lie algebras of isotropy subgroups are 

so(3) =span [ A l ,  A I ,  A,}  

n t f2 )=span(Z1 ,Z~ ,  43) m W ) = s p a n { Z ~ ,  &,&} 

so(2, I)=span{BI, &,A3} 

sa(2)=~pan{Z:,Z:,A~,~~,~~}. 

Let k -t Lk be an irreducible unitary representation of Kin H‘. We denote by o L ( Z )  
the skew Hermitian operator which represents Z e k .  Then, if k=ecZEK, 

& =eXp(EoL(z)). (8.2) 

In sections 4 and 7, QES is parametrized as Q=rAOrT. where AEA and reSO(3) .  
The expression is rewritten as Q=rA’/20(rA1/Z)T, where d]/’=diag(&, &, &) for 
d=diag(l.,, A I ,  &)EA. IfwedenoterA”2 bygQ, then Q=gaOgz=gQ. 0. I t  isconveni- 
ent to take exp(s&) or exp(&&+ s2H2) as A”’ according to whether S is S: or the 
other orbits. 

8. I. Angular inomenluin operalors 

If g,=exp(sAk), then UgS=exp(&. Since g,1gQ=r‘A1’2, where r ’ ~ S 0 ( 3 ) ,  
dp(g;’. Q)/dp(Q)= 1. The expressions o(& have two different forms according 

iwhe the r  S is S; or the other orbits. 
If  S=S:, we can choose h(Q)g(O) as rsSU(3) .  However, 

e- ‘”Xh(Q)g(8)=h($+6Q)g(s  + se)h(sy) .  (8.3) 

As, h ( 6 y ) A 0 h T ( 6 ~ )  = A 0 ,  the rotation h ( 6 y )  belongs to SA(2). Therefore, 
L&,,=exp(-6iy~ ‘(A3)), Calculating d#/ds, d6’/ds and d y / d s  with equation (8.3), 
we have 

a a COSQ 
5(2I)=sin+-+cot  B C O S Q - - + - ~ ~ ( A , )  as 34 sin 0 

a a cos 6 5 ( d I ) = - ~ ~ ~   COS Q-+- - -O~(A~)  as 84 sin B 

(8.4a) 

(8.46) 

( 8 . 4 ~ )  
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we can calculate d4/ds,  dO/ds and dy/d&, to  obtain 
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* a a COS& a 
39 84 s m e  ay 

o ( A , )  =sin 4 -+cot 0 cos 4 --- - 
* a a c o s 6  a 

a(&)= -cos --+cot e cos Q --- - ae a$ sin e ay 

(8.5a) 

(8.5b) 

(8.5~) 

8.2. Sprnnielric tensor operators 
Instead of calculating the expressions of U(&) directly at Q, it is easier to calculate 
them a t  Q = r - '  . Q and the origin O=gp' . Q, and later transform them [36] to Q, If 
Z ~ s f ( 3 ,  R) and h ~ S l ( 3 ,  R), then hZh-l~sf(3, R). That is, 

3 2 

i= I e--2 
hZh-'= c,A,+ d p  E,, CiE R d, = (-1)'' d-p E@. 

Let n,=hesZh-'. Since he""h-'=exp(&hZh-'), 

Therefore, 

The leFt side of the above equation can be calculated with equation (6.2). Since U(& 

are known, we can find a(k,,)s from five linear equations. 
Let g,=reE"r-'. Then 

Jdpl,2(g-l . Q)/dpI,2(Q)= 1 for any.geSL(3, R). Since r E o r - ' = ~ t _ - 2  D?,oE,. equa- 
tion (8.6) becomes 
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Letg,=reSH1r-’. If QES;, theng;~gp=rd’’Ze~sH* andg;’ . Q=Q. Consequently, 
the measure is unchanged by g, and k = e P H Z  belongs to SA(2). Therefore, G’= 
exp[&u‘(H,)]. If Q belongs to the other orbits, 

where I ,  = exp($E2 - mq,) and & =exp(-&- $&). Since HZ = (E2+  E-,)/ 
$, equation (8.6) implies that 

If ZEk and g,=rL’” exp(&Z)A-1’2r-’, then g;’ga=ga exp(-EZ). Therefore, 
,/dp(g;‘ Q)/dp(Q)= 1 and the right side of equation (8.6) is uL(Z)f(Q). 

If Z = H 2  then g,=rexp(&H,)r-l, and the expression of the left side of equation 
(8.6) is already known. We need to calculate the left side of equation (8.6) for A,s, 5,s. 
The other elements of k are their linear combinations. Let 

where i, j ,  k is a cyclic permutation of 1, 2,3. Coefficients cj and d, in equation (8.6) 
are calculated from the following formulae: 

and 
II/ZA k d  -In= sdh)Bk+CdIZ)Ak a2’’2Bka-1:2 = s k ( a ) ~ k  + ck(a)Bk 

BI=-i(E,+E-I) BZ=(E-l-E,) &= i(&- ,E2). 
The expressions for angular momentum operators in the body fixed frame also differ 

according as QeS: or not. If rB denotes the (i,;) component of r€S0(3), then rAkr-’== 
r ,J j ,  and therefore -iXk=u(&, r j k A , ) = Z j = ~  r,k0(2,). Ifr=lt(q4)g(O)h(y), we 

have the well known expressions 

3 

a a cos a 
-iX=-cot Ocosy--sin y-+-- 

dry 80 sin 0 8q4 
a d sin q4 a 

ayr a0 sin 0 dq4 
-i&=cotOsinyr---cos y---- 

(8.8~) 

(8.8b) 

(8 .8~)  
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However, if QES:, since r = h ( $ ) g ( e ) ,  

-i&=uL(A3). (8.9) 
i a  

sin e a4 
-ix;=- -+cot Ou'(A3) 

With the aboje expressions, expressions for u(&)s are calculated. All of them are 
of the form cr(E,) =Z2--2q,v(4,  0, y)T, ,  where y is taken to be identically 0 on 
S:. We list the expressions of T,s below. 

On S:, 

Ti2 = f [$uc(Hz) T i oL( &)I (8.10a) 

11 a i a  
ae sin e a4 

T--- (-+cot encup) 

TO=- ($+&) 

1 T+I = f [ i 5 crL(Zl) T - a3  CT L (Z,) +X;  T i 4  
al k2 

where 11 =exp($c2 - m c o ) ,  ,I2 = exp(-$cz - m h o ) .  
On SA, the expressions of To and Til are the same as above, and 

(8.lOb) 

(8. I OC) 

(8.1 l a )  

(8.11b) 

(8.llc) 

(8.12) 

( 8 . 1 3 ~ )  

(8.13b) 

(8.13c) 
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On S;, the expressions of TO and T+2 are the same as above, and 

(8.14) 

Transforming variables from EO and ~1 to v=J;i;;i; and c = l o g G  or p=e"-e-" 
is straightforward. 

9. CM(3) model Hamiltonian 

If QE$ and p = m  is small and the representation of SO(3) is trivial, U(&) 
approaches to -a/&, =-E:=-, D;,"zV, where ap is given in equation (1.1 1) and 

a 
JZ as2 2c2 u + u  U-U a so 

no=- (L*"-) 71*1 = I (-TI % . A  -) 
where U = ~ E O  and U =  48. 

Therefore, the analogue of the Bohr Hamiltonian in the CM(3)  model will be 

where B and Care parameters which cannot be determiued from the model. 
The reason why only the representation of cm(3) in Y2(S: ,  p l )  has the correspond- 

ence with the Bohr model is as follows. Consider a quadratic form 
A(y)=C:j=I Q q y j ,  where y=(yl,y2,y3). With formula ( l . l ) ,  A ( y ) =  
E,"=, (E!=, x,y,) . Let Y(x,, . . . , xA) be a wavefunction of the A-particle system, dx,= 
dxl. dxh dx3, and 

q ( x l , .  . . , x,,)Y(xI,. . . , x,,) dxl . . . dx,- I dx,+ I . . . dxA. s &4-l) 
PAX.) = 

Then (YIA(y)lY)=Z!=l ~ ( C ? = I  x,,,y,)'p,(x.) dx,>O. Therefore, if (YlA(y)lY>=O, 
then J(Z;=, ~~~y,)~p,,(x.)dx,=O for any n. As p,(x,,)>O and is not identically 0, 
@;'cl x ; . ~ ~ ) ~ = O  for any n. As y is arbitrary, x,=O for any n. Thus, the matrix (eu) 
must be positive definite. Only the representation in Y2(S: ,  p I)  satisfies the condition. 
We do not know if the other representations have applications in some field of physics 
or not. 
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