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Abstract, Irreducible unitary representations of the group CM(3), the ‘three-dimensional
coliective motion group’, which is the semidirect product of a six-dimensional Abelian group
Ts and SL(3, R), are constructed. A countable basis is identified in the carrier space of each
representation. On each SL(3, 1) orbit, elements of the Lie algebra em(3) are represented as
differential operators. The relationship of the Bohr model and the CM(3) model is discussed.

1. Introduction

The CM(3) model [1-5] of nuclei is a microscopic formulation of Bohr’s liguid drop
model [6, 7] of nuclear collective quadrupole motion. Consider a nucleus consisting of
A nucleons. Let x,, denote the ith component of the position of the nth nucleon in the
Cartesian coordinate system. Let

4
Q5= 3 Xk iLj=1.2,3. (L.

n=1

These quadratic forms are decomposed into the monopole component
3
Q0=% Z Qi (1.2)

and the quadrupole components

0%,=3(Q) — Oz) 1012 0 =F(Q13£10s)
0= (205~ 01— 0x) (3
(1] \/6 33 11 22 1.

The Bohr model assumes that a nucleus is enclosed by a surface

2
R=R, (1 + Y a,¥(8, ¢))

=-2

and the average { p(n)) of the density operator p(n)=Z;_, 8(n—n,) is 34/(4=R3)} if
|n] <Ry and 0 if |n| > Ry. If the parameters a, are assumed to be small, the averages
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of the quadrupole moments are

K@i>=4,/ %R&a,, p=0, 1, £2. (1.4)
T

However, these expressions can be derived apart from the above assumptions. Let
P be the momentum conjugate to x,, and

A
18x=1 % (Xl XiPjn) Srk=1,2,3 j#k (1.5a)

n=1

A
15=1 ¥ Xn2pm j=1,2,3 (1.56)

n=l

A

=1 Y, (XpmPrm— XomPin) (k. £, m is a cyclic permutation of 1, 2, 3). (1.5¢)

n=l

Suppose that |0 denotes the state of a nucleus of angular momentum 0. Although
{0} Q2|0 =0, the averages of quadrupole moments in the state

3
|D>=exp(—i 3, £.5:)IC)

kwf

£reR, are not 0. That is,
_ @ &)

(DI O3 DY = gol £)<0| 20 {P| Qiz1¢)>—7 <01 0%0>
{DIQLID>=0 (1.6)
where
_(23253_32@_62&:) _(3251_e2éz)
qo( &)= 7 g gr)—"'_““ﬁ - (1.7

These expressions are derived from the commutation relations

[i é! ExSe Qﬂ]'—‘(ﬁj“‘é)Qﬂ
and the formula

e”Xe""=X+[Y,X]+%[Y,[Y,X]]+.... (1.8)
If we evaluate the mean values of the quadrupole moments in the rotated state |¥)=

R(¢, 8, )| @), where R(¢, 0, y) =exp(—i¢pLs) exp(—i6L,) exp(—iwL,), from equation
(1.6) and RT'QZR=22__, D% (¢, 8, y)Q2, we have

CPIQIY> =<010"0) [Di.u(tf»', 8, wiao( &)

1
+E (Dol p, 0, W)+ Dji _2(d, 6, ¥))ga( 5:‘)]- (L.9)

(We adopt Bohr’s D-function Dy.(@, 6, w)=e"*d;,(0) e™¥ throughout this paper.)
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Expression (1.9) accords with expression (! 4) in the limit of small deformation.
We may define the radius R of the nuclei by <0{Q"%0% = R34 /5. This is because, if the
density of the nuclei is constant, the formula holds. Let Bp=./%}. ;e,d, and BeR

be a parameter such that /2/38=./5/4x 8. If we set
3
€= % & Sh= (ék——) V% Bcos (y——k) k=1,2,3
k=1

and assume that f is small, we have
go(E)x2e*” Bcosy g £ =2 Bsin y. (1.10)

If we furthermore impose the condition of volume conservation £=0, the right side of
equation (1.9) becomes the product of 4RZ,/3/10x and the well known expressions [6]

ﬁs[Dﬁo(tﬁ 8, ¥) cos T+J-(Diz(¢ 8, v)+ D, 2($, 6, v)) sin 1’] (L.11)

p=0,£1,£2

of the deformation parameters ¢, . Thus we may regard |'¥) as a deformed state in the
sense of quantum mechanics.

However, even if the deformed staies are identified, we do not know how the states
vary as time passes. In the Bohr model, equations of motions for the parameters «,,
are established by assuming that a nuclei is a liquid drop whose motion is governed by
classical fluid dynamics. In the CM(3) model, we must look for a Hamiltonian which
is an element of the universal enveloping algebra [8] generated by the operators
0,. Sy, Sk and L. If we consider the correspondence of the parameters a, and the
expectation values (¥|QZ|W¥), it is plausible to choose a Hamiltonian which accords
with the Hamiltonian of the Bohr model in the limit of small deformation. Once a
representation and Hamiltonian are chosen, the remaining problem is to identify a basis
in the carrier space of the representation so that it becomes possible to diagonalize the
Hamiltonian. It is the purpose of this article to construct irreducible representations of
CM(3) and identify bases for the carrier spaces.

The operators Q,, 1Sy, 1S, and iL, form a real Lie algebra with respect to the
commuiation relation induced from the canonical commutation relations [X,,, pr.] =
18 4%0,m. Let span{X,} denote the vector space generated by some vectors X,. The Lie
algebra c=span{Q;, iSx, 15k, L} is the semidirect sum [9] of the commutative ideal
tswspan{Q,,} and the subalgebra g=span{iSu, 1.5‘;,, iL,}. Denote 3 Zi.; 8¢ by $® and
S,—S° by S7, respectively. Let sg= span{l > 1%, 1L}, Then sg is 2 subalgebra of g
and g= sg@span{l.s"} where iS® commutes with any element of sg. Since
Tion ESe=(Zio) &)SP+ X2, &SE, removing S° from g and imposing the condition
of volume conservation are equivalent. Here, we shall adopt the volume conservaiion
condition and consider representations of the Lie algebra cm(3) =#,@sg. By doing so,
we can suppress scaling factors which make formulae onerous, do not lose any essential
content of the theory and, furthermore, incorporating later volume variation by S°
does not cause any difficulty.

2. Group CM(3)

In this section, we shall construct a topological group CM(3) of the algebra cm(3) from
the following: (i) as is seen from the form of the wavefunction |¥'), the deformation
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is generated by exponential functions of the elements of g; (ii) the representations of
the Lie algebra are obtained from those of the group by differentiation. In general, a
group gencrated by an algebra is more connotative. We need some additional
assumptions to make a group of an algebra.

Instead of defining the domain and the range of the elements of em(3) in a Hilbert
space, we shall proceed formally. For x={(i, #12, K13, K22, K23, r;;)eﬂ%ﬁ, let U,=
exp(i T,y k,0;), where the exponential is defined by the formal power series whose
first term is the ‘identity’ 1. Since Oys commute mutually, U, U= U, ., for , k'eR°®.
Let 0=(0,0,0,0,0,0). As UpyU,=U.Uy=U,, Up=1 From U.U_.=I we have
U'=U_,. If we define an emeighbourhood of U, by B(U., &)=
{Upl/Zig; (k5= K§)* < £}, then the collection To= {U,| x€R®} becomes a six-dimen-
sional Abelian group which is homeomorphic to R°. _

Next we shall make a group of the Lie algebra sg and make it homoeomorphic to
SL(3, R) Let Xjk=i EAE] X jn Phen f, k= 1, 2, 3. Then g=span{X,-j]i,j= 1, 2, 3} Let E-'f
denote the matrix unit of 3 X3 matrices whose (/,/) component is 1 and the other
components are 0. A linear map /1:g — g/ (3, R) defined by A(X;; } = —E,, is an isomorph-
ism, and so is the restriction /sg:sg —+ s/ (3, R).

The Lie algebra s/(3, R) generates the group SL(3, R)={gegl/(3, R)|detg=1}.
However, the isomorphism of sg and s/ (3, R) does not a priori imply the homeomorph-
ism of SL(3, R) and a group generated by sg. Let j&f| denote the Euclidean norm
. /Tr(sai Y of eegi (3, R). Usually s/(3, R) and SL(3, R) are given the subspace topol-
ogy of R’ induced by the Euclidean metric d(a, B)=|a — S|, where a, fes{(3, R) or
a, BeSL(3, R). In that topology, s/(3, R) = R®, where ‘=’ means ‘be homeomorphic
to.

If £esl(3, R). the exponential series exp(&) =E;%,4 £"/nl belongs to SL(3, R). Let 0
and 7 denoie zero and the identity of s/(3,R) and SL(3, R), respectively. Let
B(0,log 2)={ces!/ (3, R)| jell<log2} and W={exp ¢| £ B(0,log2)}. Then W is a
neighbourhood of 7eSL(3, R). On ¥, the logarithmic series logg=Z7., (/—g)"/n
absolutely converges, and it holds that [10] exp{log g) =g. Since exp B(, log 2) and its
inverse log| ¥ are continuous, B(0, log 2) is homeomorphic to W. .

As W'={w™'| we W} = W.any ge SL(3, R) can be represented 4 product of finitely
many elements [11] of W, that is, g=g,... g, for some non-negative integer » and
some g1,...,8.€W. If g.eW, e,=logg, belongs to B(D, log 2} and therefore

g=exp(e) ... exp(&y) 2.1

for some &, ..., &.€B(0, log 2).
For e=(g;)}es/(3, R) let

3
U5=€Xp (_ Z E,ij,')

=1
be a formal power series. Then Uy=17and U; '=¢_,. Let
We={U,...Ugl&1,...,.€5(3, R)}.

Then SG= U, W2, becomes a group.



Unitary representations of CM(3) 4477

From the commutation relation

3 3
[ z Slj'Xﬂnxkn]=z eij_;n i=1,2,3 n=l,2,...,A
=1 i=1

and formula (1.8), we have

3
UxuU = Y [exp(—€" )]k n i=1,2,3 n=1,2,..., 4. (2.2)

=1

Let ¢ denote this map U,—exp(—&'). Then the map ¢:SG - SL(3, R) satisfies
(U U= (U (U,). Also it is surjective. The reason for this is, given ge SL(3, R),
g=exp(g))...exp(e,) for some &, ..., £eB(0,log2) and ¢(U_7... U_J)=¢g

Let Ker ¢ denote the kernel of ¢. The kernel is not a one-point set. For example,
elements exp(2Zmx iL;), where k=1,2,3 and meZ, belong to Ker ¢. By the homo-
morphism theorem of group theory, SG/Ker ¢ is isomorphic to SL(3, R). Let w denote
this isomorphism. If we define w~'(¥) is open in SG/Ker ¢ if and only if ¥ is open in
SL(3, R), then SG/Ker ¢ becomes homeomorphic to SL(3, R). We hereafter denote
SG/Ker ¢ by SL(3, R).

For g=exp(e)) .. .exp(&,), denote the residue class of U_.... U_;eSG by .
Also denote (g7)"'=(g™") and its (i, /) component by g* and g} , respectively. Then
by equation (2.2) and the definition (1.1) of Q,, for ae SL(3, R),

3
0, =UaQyUs'= ¥ afiaf Qu= Y Aw,(@)Qu (2.3)
ki=1 ot
where
Awiy(a) = akaf +ajal; if </

— % aE
Akk.ij = Lyt

By straightforward calculation, the determinant of the 6 X 6 matrix (Ax,(a)) is shown
to be (det @)%, which is 1 for deta=1. If we arrange Qs in the form of a 3x3
symmetric matrix,

Qll QIZ Q13
0=z Qn On 24
Gz O O

and denote a~'Q(a™")" by a”' - Q then equation (2.3) can be written as
Q=U,0U"'=a"- 0. (2.5)

Now, the collection CM(3) = {U, U,| U, T, U,eSL(3, R)} is shown to be the semi-
direct product group Ts X SL(3. R). In fact, /=UpU, is the identity. For xeR® and
aeSL(3,R), let a-x be defined by %y dyu(@)kw. Then U U U '=U,  eTs.
Therefore U, 'U;'=U_,-. U;'eCM(3) is the inverse of U.U, and U U, U U,=
U U U U YU Up=Up s o Uswe CM(3).
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Since det(A; . ()) is not 0, the linear map «,; = Ly« Ayula)kus is an automorphism
of R®={(xu, ..., k33)}. Thus CM(3), a subspace of R°xR®, is a semidirect product
[12] of Ts and SL(3, R).

3. SL(3, R) orbits in R® and the isotropy subgroups

Since Ty is Abelian, its irreducible representations are one dimensional. For U/, e Ty,
the map xg:U, —exp(iZi;x,Q)) is the representation Ilabelled by O'=
(O, Qla, . . ., O53)eRE. As usual, we give R® the standard topology. In the bra-ket
formalism [13], if we denote by |@'>=|011, Ola. - . ., 043 the simultaneous eigenstate
of Qs, then

U @0 =xa(UIIQ> 3.

and {|@'>} is the one-dimensional carrier space. If we operate with equation (2.3) on

| @, then
U0y U7 19> =0510" Q=73 Aui(@Qu=(a""" Q) (3.2)

ksl

where (¥ denotes the matrix of the form of equation (2.4} whose components are real
numbers. Since Q}s are ¢-numbers,

QU 1QY=0 U1 (3.3)

which implies that U;'| Q") is the eigenstate of the quadrupole moments @y belonging
to the eigenvalues @} . That is,

Uz 190 =cl 0% Q'=a' g (3.4)

where ¢ is a function of ae SL(3, R) and (', which will be suitably chosen in section 6.
Equation (3.4) shows that U,eSL(3, R) connects carrier spaces of the representations
of Ts. However, not arbitrary |Q™> and | Q") are connecied by some U,.

If we define a relation by

0~ ifQ"=aQa"=a- @ forsomeacSL(3, R)

this relation is an equivalence relation. On each equivalence class, called an orbit,
SL(3, R) acts transitively. We shall list below all of these orbits. We hereafter denote
the eigenvalues of the quadrupole moments by @, so far as no confusion arises. If
det Q#det O then Q and ¢ belong to different orbits. Let

A={diag(h, Az, A5)| 4> 0, Adads = 1} < SL(3, R).

Since Q< R’ is a real symmetric matrix, there exist e A and reSO(3) such that (rA)TOrd
is equal to one of the following matrices:

+/diag(l, 1, 1) +/diag(-1, =1, 1) (3.5)
where [=|det 0}"? %0,
+diag(1l, 1, 0) diag(l, —1, 0} +diag(0,0, 1) 0=diag(0,0,0). (3.6)

That is, any @ is equivalent to one of the above matrices. Furthermore, by Sylvester’s
law of inertia [14], matrices given in eguations (3.5) and (3.6) are non-equivalent,
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because they have different signatures. We shall call these matrices the origins of the

orbits,
Thus, there are the following SL(3, R) orbits:

SE(D) ={Q=xIr A" reSOQ3), AeA}  [>0

S# (1) ={Q@==*IrA% diag(—1, =1, 1)rT|re SO(3), 2eA} >0
SF={0==+ra’diag(l, 1, 0)r"Ire SO(3), AcA}

Se={Q=+rA? diag(l, —1, 0)r"jre SO(3), 2eA)}

8% = {Q==%rA* diag(0, 0, )"[reSO(3), AeA)

Se={0}.

It is natural to give all of these orbits the subspace topology of RS, Although R® is
the union of all of these orbits, since the inversion @ — — and the scale transformation
O - I1Q(1>0) are diffeomorphisms, there are only six orbits, S;" =57 (1), $2 =55 (1),
S5, 84, 8¢ and Ss, which may be mutually not homeomorphic. In fact, since the dimen-
sions of Sg and S5 are 0 and 3, respectively, they are not mutually homeomorphic nor
homeomorphic with the other orbits whose dimensions are 5.

Let O denote the origin of an SL(3, R) orbit. The isotropy subgroup of SL(3, R)
with respect to the origin O is found by solving the equation O0=a0a", aeSL(3, R).
We denote the isotropy subgroups of §;°, S5, S5, S4, S5 and Ss by K1, K, Ks, Ka, K
and K, respectively. Obviously K;=SL(3,R) and K,=S50(3). Let C,=
diag(1, —1, —1}, which is the s-rotation about the x-axis. The remaining isotropy
subgroups are listed below:

K>=80(2,1)=850(2, 1) v C.SO(2, 1)

where S0(2, 1}, is the three-dimensional proper Lotentz group which is 2 normal
subgroup of SO(2, 1).

K=M(2}u CM(2)
where

cos@ —siné a
M@2)=«|sin® cos@ &|la b 0cR
0 0 1

is the two-dimensional Fuclidean motion group [15], and is a normal subgroup of K,

cosht sinhrt @
K.,=<sinht cosht b ||a b 7R
0 0 1

which is denoted by MH(2) in [15].
Ks=54(2y v C.54(2)
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where

a b 0
SA(2)=dc d 0]lx, p,a,b,c, deR, ad—bc=1
x y 1

which is a normal subgroup of Xs. It will be appropriate to call S4(2} the *special two-
dimensional affine motion group’ because it is a semidirect product T féSLQ’ R) of

SE(2, R)= a,b, ¢, deR, ad—be=1

[ o S
S &, O
—_ O O

and an Abelian group

|
T2= 0
X

~
p—

Unitary representations of SO(2.1)e, M(2), MH(2) are known [15], and those of
SA(2) can be obtained by the method of induced representation explained in section
6. Representations of K>, Kj, Ky and K are obtained by the method of induced represen-
tation given in [16]. Representations of K;=SL(3, R) are given in [17].

4. Fundamental Groups of SL(3, R) orbits

In order to discriminate the structures of the SL(3, R) orbits, we consider their connec-
tivity. It is known that Si is homeomorphic [18] to R°={Xegl (3, R} X=X", Tt X=
0}. That is, Si is simply connected. Let S and O be one of the SL(3, R) orbits and its
origin. If QS then 0=rA?0r™, where A=(e*, ¢%, &%), &R and &, + &+ £3=0, For
tef0, 17, let L(H)=(e", "2, ¢%*} and Q(¢) =rA(£)*Or". Then Q(¢), t€[0, 1] is a strong
deformation retraction [19] of § and M={Q=rOr"jreSO(3)}. The fundamental
groups of § and M are isomorphic [19].
First we take up S5 . Let

cos¢ —sing O cos8 O sind
h(g)=tsing cos¢ 0 g(0)y= 0 ] 0
0 0 1 -smf 0 cosé

Then any r& SO(3) is represented by the product 2(¢@)g(8)4(y), where ¢, weR mod 27
and @€[0, z]. The strong deformation retract of Sy is M= {r diag(0, 0, 1)rT|re SO(3)}.
If QeMs, then Q=h($)g()diag(0,0, Dg"()4 (). Let x,=sin @ cos ¢, x,=
sin @ sin @, x;=cos 8. Then the (i, /) component g; of @ is x.x;. Therefore, M is the
image set of the map f:S* — R® defined by f(x, X, x3);=xx,. According as g, #0,
g22#0 and g1 0, we can take (912/911, qi3/911)s (@12/922, @23/92) and (qi3/d33, g3/
¢33) as local coordinates of M. Coordinate transformation functions are infinitely many
times continuously differentiable,

By the map f, points (x;, X2, X3) and (—x,, —Xz, —x3) of S are mapped to the same
point of Ms. Conversely, f~’(Q) consist of two points. For example, suppose that
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g13#0 and let 1y =g,3/¢g33 and w2 =¢ga3/¢33- Then

r@-{a|

29 Uz 1 )} (4 1)
\/u?+u§+I‘\/uf+u§+l,v'luf+u§+l ' .

Thus, M; is a set consisting of the pairs of antipodal points of 5°. However, in order
to infer that M, is the two-dimensional projective space P2, we need to show that the
quotient topology [20] of M induced by fis the same as the given topology. It suffices
to show that f: §2 — R is an open map. Let ¥ be a subset of M such that U=7"'(})
is open. Let Qe V and xef ~'(Q). Since U is open. there exist a neighbourhood E<= U
of x. As is seen from equation (4.1), if E is chosen sufficiently small then xe £, —x¢E,
the restriction f|E: E — f(E) is bijective and ( f] E)™' is continuous.

Therefore, ((f1E)Y )" E)=F(E) is open. Then f(E)<V is a neighbourhood of
Qe V. Thus ¥ is open. The fundamental group of P* is the two-point group. Thus, M;
and therefore S5 are doubly connected.

Strong deformation retracts of S; and S3 are M,= {rdiag(—1, —1, 1)r"|re SO(3)}
and  M;={rdiag(l, 1,0)rF|reSO(3)}, respectively. Because diag(-1—1,1)=
—I+2 diag(0, 0, 1) and diag(1, 1, 0) =I—diag(0, 0, 1), A, and M; are homeomorphic
to P?. Thus, all of S5, S5 and S5 are doubly connected.

The structure of S, is more complicated. Let £:S0(3) - R® be the map defined by
F(ry=r diag(l, —1,0%". Then M,=/(SO(3})). Let D,= {1, C, C,, C.} be the dihedral
group consisting of the identity and m-rotations about the x, y, z axes. If Ce D, then
J(rC)=f(r). Conversely, if f(rC)=f(r) for CeSO(3) then CeD. This is shown by
solving the equation Cdiag(l, ~1.0)C" =diag(l, —1,0), CeSO(3). Thus, M, is the
quotient set §O(3)/D,. First we shall show that M, is a three-dimensional manifold
embedded in R®. Let A, denote the (i, ;) cofactor of det Q. Since the eigenvalues of
QeM,yarel, —1,0,

M QY=Tr §=0 ()= é A,+1=0 h(Q)y=det 0=0.
If we define 4: R® = R by h(Q) = (1 {Q), B2( O}, hs(0)), then M= h""(0). The derivative
of hat O is

1 0 0 1 G 1
th= —gu —2g —2q; —~g2 =292 —qu
Ay 2A1 2A0 A 28 A

where 1, ha, B3 and ¢\, g2z, . . . , g3 are arranged vertically and horizontally, respec-
tively. By elementary linear algebra, the rank of dA, is shown to be 3. Therefore, M,
is a three-dimensional subspace [21] of R®, and three of the gi1, §22, - - - ¢33 Serve as
local coordinates.

Although we do not write down the lengthy algebraic expressions of £7'((), it is
shown that if r&f ~'(Q), then (@)= {r, ¥C,, rC,, rC.}. In the same way as above, /°
can be shown to be an open map. and consequently $SO(3)/D; in the quotient topology
is homeomorphic to M.

Let Ad: SU(2) —» SO(3) be the adjoint representation [22] of SIA2). Let p=f Ad.
Then p: SU(2) ~ M, is shown to be an open and covering map [23]. Let D= Ad ~'(D,),

then 52={i((1) ?)i(? (‘])i(? _Ol)i((', i)}
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Since M4=S0(3)/D,=SU(2)/D,, and SU(2) is simply connected, the fundamental
group of M, js isomorphic [24]1 to D,. Thus M;, and therefore S., is an eight-fold
connected space. In conclusion, except for the possibility that S5 and Sy are homeomor-
phic, all orbits 7", S2, 57, Ss, S5 are not mutually homeomorphic.

5. Measures on SL(3, R} orhits

Suppose that S is a k-dimensional surface in R® and (a, ..., @) = QS is its para-
metrization (differentiable surjection). Set x,=0Qy,, x,=y20:, x;=V20;, xa=On,
,r5=ﬁQ23 and x¢=(5;. Then the measure on § induced by the Euclidean norm

IQl=/Tt @*= /2% %, 1s

O(Xiy e - y) :
3(a|,...,ak)

With the aid of this formula, we can calculate the measures on any SL{3, R) orbit. We
shall suppress numeral factors of the measures which are absorbed in the normalization
of wavefunctions.

Let  #(¢, 0, v)=h(d)g(Dh(y)eSO(3). I QeSiy, then O(¢,0,v)=
(¢, 8, w) diag(0, 0, VIr" (9, 8, w)=h($)g(9) diag(0, 0, vIg"(O):"(¢), where veR",
We can take v, 6, ¢ as parameters of the orbit §; . By equation (5.1),

dp(Q)= z

NS

de, . ..da. (5.1)

dus(Q)=v*dv sin 0 d0 d¢. (5.2)
If QeS5 or ¢, then
C(e, 8, v, Ay, A)=r(¢, 0, w) diag(ii, £z, 0)r7(p, 8, v) A, ApeR*,
According as QeS; or QeS;, equation (5.1) implies that
dps( QY= A1 42| Ay — A dA; dAysin @ dO dé dy (5.3
dpa(Q) =1 4a(A, + A;) dA, dA; sin 8 A6 dg dy. (5.4)

The measures (5.2}, {5.3} and (5.4) are quasi-invariant [25].
If QeS8 or QeS7, then

Q(‘){), 9, ¥, 3..] E A'Is 13) =I'(¢, 9: '}’) djag{i/lla "-—-"112, 2‘3)’_1'(@5‘ 6, W)
My Az, AeRT MAzAs=1

and Tr Q"?=%2%, 1/A2. If we introduce two independent variables g4, £,6 R such that

A =exp[2(&2/V2— g0/ /O)], Aa=expl2(—&2/2— 0/ \6)), As=exp(2yZ/3¢o), then,
according as QeS; or QeSy, quasi-invariant measures calculated from formula (5.1)
are

A (Q) =/ Tr @77 | A — Xl ) Aa— 2] | A3 — 4] o de, sin 8 d6 de dy
dp2(Q) =/ Tr Q74— Aol (A2 + A3)(As + A1) d&p d ez sin € A dgp dy.

However, on S;" and 57, there exist invariant measures induced from the measure
d¥V=dx; dx;. .. dxs of R®. The group GL™(3, R) is the direct product R* x SL(3., R),

f A proof is given by slightly modifying the proof of theorem 4.4 (p 340) of [19].
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and V"= U s0 ST (J), where i=1,2, are GL*(3, R) orbits in R®, On V" and V5, the
measure AV =dx, dx; ... dxs takes the form

doy (0)="0*12— A 1A= sl [As— 41| d/ degg de, sin 8 d@ do dy
doi (Q) =04 — A A+ A) (A + A) dl deg d ey sin € d@ dg dy

respectively. These measures are invariant under the action of SL(3, R). This is because,
if O'=aQa” for acSL(3, R) then 8(Q,. .., @)/ 01, ..., O)=(det g)*=1. Since
PP=detQ and detQ is invariant under the action of SL(3,R), du,(Q)=
do} (Q)/dl|;=,,i=1, 2, are invariant measures on S, and S; . They are of the form

du(0) =121 = Azl [Aa— Aa| |As— A, deg des sin 6 dO d¢ dy (5.5)
dus(Q)=[A = Aol Ga+ As)(As+ A1) deo des sin 6 d6 dp dy. (5.6)

6. Induced unitary representations of CM(3)

The method of constructing irreducible unitary representations of such a semidirect
product group as CM(3) is well known [26]. Let .S be one of the SL(3, R) orbits whose
origin is O, and K is the isotropy subgroup. Then § is diffeomorphic [27] to SL(3, R)/
K. Let H™ be the carrier space of an irreducible unitary representation of X labelled
by L and {|1>} be an orthonormal basis for H*. Let Ly: H* — H* be the representation
of keK. Then

L > =L De:(R) 77 (6.1)

where (2,.(k)} is the representation matrix.

For Qe S, choose an element goe.5L(3, R) such that 0= g, - (. The way of choosing
go is not unique. However, it suffices that the collection Bs={gy| QeS} becomes a
Borel set [28,29] in SL(3, R). Since SL(3, R)eR® is locally compact (cf [19], p 186,
corollary 8.3), it is equipped with the o-ring consisting of Borel sets, and for each orbit
S we can concretely choose gg so that Bs becomes 2 Borel set. The map Q — gp is. in
general, neither differentiable nor continuous. Given geSL(3, R), let 0=g- O and
go€ Bs be the element such that 0=g, - O, then &k, =g5'g belongs to K. The decomposi-
tion g=gok, is called the Mackey decomposition [29]. We denote the map g — &, by
o. Since the map Q — g, is not continuous, neither is the map o:g — k,.

Let » be the invariant or a quasi-invariant measure on S. If we choose
c= \/ du(g™'Q")/du(Q’) in equation (3.4), then it holds that the completeness relation

1=f 12 d#(Q’)<Q’|=j 197> du(Q )2
5 iy

Let £2(S, u, H*) be the set consisting of square integrable functions /35 — H*. That
is, if fe LS, u, HY),

Q=2 £

SI=] TIAQ du(@) <+oo.

5T
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For Q&S let Q=gp-0, where gpeBs. Given goeSL(3, R) let
Q=g 0,81=50'gg and g =gpk,, be the Mackey decomposition of g,. Now, for
U, eSL(3, R), define a linear map p(U,): LX(S, pr, H*} - £X(S, u, H") by

(p(Up Y NQ) =L, (Z QUL fr>)if>

d.”(gu ) -l( -1 )
Ly \go
PV e~ an(0) o ;f o)t
fdu(g’ - @)
= Bk Vet . 6.2
41(0) Z (kg )eefelga’ - ONTD (6.2)

Then p(Ug,) is a strongly continuous unitary representation of Uy,. Note that g —+ 4,
is not continuous and therefore g — @.-(k;) is not continuous, but Uy, — p(U,,) is
continuous. That is, even if g = Z..(k,) is not continuous, if ||go— 5!l is sufficiently
small |2,.(ky )~ D.olks)| becomes arbitrary small for k,=o(gs'ge) and
ks = 0(#7'g0). Finally, for U, U,e CM(3) if we define

p(UU,): FXS, u, HY) —» L3S, u, HY)
by
(p(U U fUQ) = 20U ) p(Up) S )(Q)

then U, U, — p(U,Uy) is an irreducible unitary representation of CM(3).
If Lis the trivial representation of X, then equation (6.2) becomes

(P(Ug) SUQ) = o / d“§g°{ Q)Q)f &' Q) (6.3)

and ,2”2(;1,.5’}1’) becomes LS, 1)={/15 — Clf;| f(Q)|* du(Q)<+o0}. As
[sZ: | f:(O) du(Q@) < +o0, obviously f,e £2(S, u). Therefore, if {u,(Q)} is a basis for
FS, 1), then {4,(Q)®| 1)} serves as a basis for £*(S, u, H").

7. Basis for £%(S, pr)

Let us introduce some basis for £2(S, u) by considering the structure of S. First we
note that if /21X — Y is a homeomorphism, gy and u y are quasi-invariant measures on
X and Y, respectively and {¢,(x)} is a basis for £(X, px), then the collection of y,(y)
defined by

dpex(x) dPx( X)
T g 0= | D
y=fey  x={"(eX

serves as a basis for £3(¥, uy). Also, we shall make use of the fact that if g:.X—-VYis
a surjection and h: X - C is constant on the inverse image g~'(») of ye ¥, then 4 can
be regarded as a function on ¥.

V’n( J") = ¢H( )
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7.1. Basis for $25¢, uts)

If QeSt, then Q= vd. where veR* and JeM;> P2 The map (v, O)—vJeSt is
continuous. Also, the inverse of the map is continuous. Because, for QeSs, v=Tr @
and J=Q/v are continuous. Thus S7 =R* x P%. Let du*(v)=e"* dv. Then Laguerre
polynomials [30] L{(v)=e" d"(e™" v")/dv", satisfying the orthogonality

J‘ LH(V)LHQ dﬂu@*(v)=(n!)25m,'
0

are complete in ' (R', ug+). Spherical harmonics Y,.(6, ¢) are complete in
LS, ps?), where dus2(8, ¢)=sin 6 d@ d¢. Functions on S which take the same value
on a pair of antipodal points can be regarded as functions on P* (cf equation (4.1)).
As Yi(r—0, ¢+ 1)=(=1)' Vil 8, §), the set {¥,,|/even} is complete in L (P, us).
The difference of the measures dps(Q) and dpg+(v) dps(8, ¢) is compensated by
merely multiplying L,(v) Y8, ¢) by e™*/*/v. Thus,

{(e7Y2/VILAV) Yin(D, D) neN, [ even)}

is an orthogonal basis for £*(S%, us).

7.2. Basis for (S5, us)

If QesS7, then Q=r diag(l;, Az, 0)¢7, where reSO(3) and A, ,eR*. Let v=L A
and ef=./4,/1,, then veR", ee® and Q= vrdiagle®, e7%, 0)/%. The orbit S is the
Cartesian product of R* and S§;={rdiag(e®, e% 0)r'|eeR, reSO(3)}. In fact, if
Qe.Sj , theg v=\/ [(Tr O)*—Tr 0’1/2 and J=Q/v are continuous, and the inverse
(v, 0)— v is continaous, Let

cosdd —sing 0

S0(2)= h(¢)=(sin¢ cos¢ 0 |dcR;.
0 0 i

Since
SO(3) = {M($)g(NWr(y) A (¢), A(w)eSO(2), B0, z]}
and {diag(e®, ¢™*, 0)| s R} =R, S is the image set of the map
F3:80(2) x [0, ] % SO(2) x R~ RS
defined by
Sy, 8, B(y), &) =h($)2(0)a(y) diag(e®, e™% W (w)g (O)A(¢ ).

However, there exists a more convenient parametrization of Qef;. Let X;=
{h diag(e®, e, 0)4"|heSO(2)} = 8. Define a map #:: SO x [0, z] xX;—-RE by
£:(h(¢), 8, Py=h($)g(6)Pg" (8)A™(¢), where P=h(y) diag(e®,e ", k" (¥)eX;, then
Fi(#($), 8, (), &) =£:(n(9), 6, P) and Sy =:(SO(2) x [0, x] x X;). Since

Z:(h(9), 0, P)=(h($)h(w)) diag(e®, e, 0)(h(d)a(y)) ks
Z:(h(@), 7, P)=(h($)r~' (w)) dirg(e®. ¢, D)W~ (v)) eXs
S0(2) % {0} x Xz and SO(2) x {z} x X5 are projected on to X;. If #<(0, ), then
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g:(h($), 0, P) does not belong to X;. We shall consider functions from
SO(2) % [0, ] % X; to C, which are constant on &5 '(0).

First we show that X,x=R% Let p, denote the (i j) component of P=
h(y) diag(e®, ¢™%, )" (w)eX;. Then

u=pn+pn=(€+e v=pn—pn=(e"—e %) cos 2y
w=2p,=(e*—e ) sin 2y (7.1)

and the other components of P are 0. Since 1~ (v +w?)=4 and >0, X is a sheet
of the hyperboloid of two sheets. The projection (u, v, w)— (v, w) and its inverse
(v, W)= (/4 + 07+ w?, v, w) are differentiable, and consequently 5= R%

Let H,(u) denote a Hermite polynomial [31}. Then

{exp[—(0°+ W) /2] H (o), (W)l m=0,1,2, ... }

is complete in Z*(R%, ua?), where dugi(v, w) =dv dw. However, it is more convenient
to adopt their linear combinations

Y Conf L (DY H W)= exp[— (7 +w?)/ 2]L}”( v+ w)) (o +in)* iftk=0
=exp[— (7 +w?) 2] LE (P + wh)(v—iw)F if k<0

where L} is the Laguerre polynomial [30], & an integer and j a non-negative integer.
Substituting pcos 2y and psin 2y, where p={(e"—¢™ %), for v and w regpectively, we
have basis functions

Gul p, W) =€~ pH LI p?) ¥ (7.2)

well defined on X:. The function ¢;.(p, ¥) is invariant under the transformation
{(p,w)—=(—p, wxxr/2). This invariance arises from #i(y) diag(e®,e™%, 0V (y)=
My + x/2) diag(e™*, €%, 0)4" (w £ 7 /2). In this parametrization of (v, w) by (o, ¥) any
function on X; must satisfy the invariance. Therefore,

0 bt 4 o0 2k r/2
j pdpj dy F(p, w)=J‘ pdpj dy F(p, y)
- 0

=0 [} +x/2

0 2z
=f pdpj dy F(p, v)
0 o

and consequently, in equation (7.2}, we may restrict the domain of p to [0, —o0).

For h(¢)eSO(2), let z; =¢'. Then the set {z{' dys(8)J=0,1,..., M=~J,...,J},
where K is arbitrarily chosen for each J, is complele in the space of square integrable
functions on SO(2) % [0, z]. Therefore, {¢,.(p, ¥)zi” dix(0)} is complete in the space
of square integrable functions on SO(2) x [0, z] x X;.

Now, if #¢(0, ) and Q=g(h(¢), 8, P) then §7'(Q) consists of two points
(h(d), 8, Py and (h(d+m), z—8, g(z)Pg(x)). Since g(m)hdiag(e?, e, OWi"g(n)=
BT diag(e®, ™%, 0)h, if the value of function ¢ at P is ¢,u{ p, ¥), its value at g{x)Pg(n)
is ¢,4( o, —w). Also, M@ P d] (x—0)=(—1) "? d}, - (8). Therefore,

w(Q)=e" P LM p%) €™ (dix(6) €V + (—1) disx(8) € (7.3)
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is well defined on §;~X;. We shall extend the domain of this function to &. For
OeS;—X;, limg_o.. Q belongs to X'5. On the other hand,

lim w(Q) =™ PHII p2)(Brur € €Y+ (1) &7 7).

-0
The limit limg_o ¥(Q) becomes a function on .f; if and only if K=2k. This is because,

if and only if K=2k, limg_, w(Q) is a function of k{¢)2(yw)}eSO(2) and is a linear
combination of the functions given in equation (7.2}. Also, if K=2k,

lim y(Q) =€ P HLH( ) (~1) 81 €O TV G 1)
which is a function of h($)~'(w)e SO(2), and well defined on X;.
Let y={njJ, M, 2%}, I'={y} and
YA Q)= La(v) e ™72 pM LI (PP Dirand @, 6, w) + (= 1Y Dl (9, 0, ¥)). (7.4)

in the variables p and v,

dus(@)=2v* dv 22 in 0 46 dg dy.

Jpita

Therefore, {f/p2+4v"" e w (Q)yel} is a basis for £S5, ).

7.3. Basis for £3(S;, i)

A basis for £%(S,, 14) can be identified in the same way as above. f QeS,, then Q0=
vr diag(e®—e°, 0)r", where veR", eeR and reSO(3). Therefore, S, is a Cartesian
product of R* and S§,={rdiag(e®, —e %, 0)r"|reSO(3), eeR}. Let X,=
{f diag(e®, —e™, 0)A"|he SO(2), ecR}. If PeXy, then

u=pn+pn=(e’—e"%) v=py—pn=(+e ") cos 2y
w=2p;z=(e*+e" %) sin 2y (7.5)

and the other components of P are 0. Since v*+w?—u*=4, X, is the hyperboloid of
one sheet, which is diffeomorphic to RxS§', §'={(#;, no)|ni +n3=1}. This is because
both (u, o, w) = (1, v/ /" + %’ w/ /o' +wDeR XS and (u, 1y, ny) = (4, /1" +4n,,

Jif+4n)eS, are differentiable. Therefore, the collection of functions
g W2 H, (1) eV serves as a basis for the space of square integrable functions on Xa.
If we make

(@)= Lo(v) e H(u)( Dz, 6, w)+ (—1)Disoaal$, 6, ¥))

where y = {n, m, J, M, 2k}, then the collection {v™*e™"" y,(Q)|yel'} becomes a basis
for £*(Sy, pa).

7.4. Basis for £%(S3, us)

We shall show that S5 is homeomorphic to S; and infer that the collection of the
functions of the form (7.4) also serves as a basis for (S5, pu,). Let
f2:80(2) [0, r] x SO} x R** -+ 87 and f3:50(2) X [0, #] X SO(2) x R** - S+ be
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defined by
So(h($), 8, h(w), i, A2)

=h(¢)g(O)(y) diag(~A1, =22, 1/MA2)1" (W) (O)R' (),
F(r(9), 8, h(y), i, A7)

=h(¢)g(6)A(y) diag(di, A2, O)AT(¥)g"(B)A" ().
Let

Xo={hdiag(—1;, =12, 1/LA)AT|he SO(2)}

= {hdiag(li, A2, 0)1"|heSO(2)}.

Then if and only if 0=0 or = f2(h(d), 0 A(v), 4, A2)eX, and
Ji(h(P), 0, h(y), L1, Ax)eX;. Also, if =0 or =, then f; and f; depend on
h(¢), h(w)eSO(2) through the product A(¢)Ya(y) or A(d)e™'(w).

If

Ps=h(y) diag(Ai, L2, A (¥)eX;
and

Py=h(y) diag(—A1, ~Az, 1/ MA2)R (W)X,

o pz 0 - P 0
Py={pmz pz 0 Py=| —pn —pa 0 .
0 o 0 0 0 1;’(F||P22—P?2)

Since the map P, — P, and its inverse are continuous, X>=X;. Let n, denote the
homeomorphism from X; to X;. Obviously

N2:SO2) % [0, 7] # Xy - SO(2) x [0, 7] x X3

then

defined by
n2{h(@), 8, P))= ("¢}, 6. m(P2))

is a homeomorphism.

Now, if we define ga: SO(?.) X [0 7] x Xy — S and g::SO(2) X [0, 1) % X5 — 83 by
g2(h(¢). 8, P)= k(¢)g(9)Pzg (O (¢) and gz.(fz((i’) 8, P)=h($)g(0)P:g (D)7 (9),
then bothof £ =g;- 1, - gz' and {= g ns' ' become well defined continuous
maps whose compositions ¢ - £ and £~ £ are ldentmes Therefore S5 = Sy, If we adopt
the variables v=/A14; and p=/A/A:—/A;/4, instead of & and ¢, the invariant
measure on S; becomes

B (Vv P+ .
d,uz(Q)—? \/m dvpdpsin 8dd dg dy.

Therefore, if w,(Q) is given by the right side of equation (7.4), the collection

I VRN +v't /pP+ 4w (Q)yel’} is an orthogonal basis for
EZ(SZ':F’Z)
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7.5. Basis for £%(ST, u1)

Finally we shall identify a basis for (S}, u.). Let s={Aes/(3, R}iA4 =AT} be the
subspace of s/(3, R)=R® Let E be the two-dimensional subspace of s =R’ consisting
of diagonal matrices. Then exp:E — A is a diffeomorphism. If QeST, then Q=rA%",
where Ae A and re SO(3). Since A=exp(& ) for a unique £€5, Q=rexp( &)r" =exp(24),
where A=r&rTes. Any Aes can be represented in the form r&r” for some £€Z and
reSO(3). The map exp:s — ST defined by the matrix power series is a diffeomorphism
[32]. Therefore, any basis for #*(R’, ugs) becomes a basis for £2(S7, y,), if the differ-
ence of the invariant measures is suitably adjusted. However, in order to show the
relation of the CM(3} model and the Bohr model, we will explain some detail.
Let

-1//6 0 0 Yown2 o0
Eo=| 0 -1//8 0 Eo=| Fi/2 -3 0
0 0 273 0 0 0
0o 0 Fi
Ea=| 0 0 i/
5 i2 0

Then, these matrices form an orthonormal basis for s with respect to the scalar product
(Eu, E\)=Tr E,E,. If 0=(0Q;) is a 3 x 3 real symmetric matrix, then

2
Q=0T+ ¥ QiE, (7.6)

==

where Q° and (QJs are expressions given by equations (1.2) and (1.3). The matrices E,
transform under the action of r=#a{@)g(B)a(y)eSO(3), as

2
rEyT=Y DL.(¢, 8 v)E,. (1.7)

v==2

Now, if des then A=ré&rT, for some £cZ and re SO(3). Since {Ey, (Ea+ E_p)/
2} is a basis for B, &= gEy+ ex(E> + E-5)//2 for some &, 26 R. Therefore, any Aes
is the linear combination Zi ——» @:E,, whose coefficients are

0.'”: SoDi.o(¢, 9: V”) +% {Di,2(¢’ 8: W)+ Dz‘“2(¢s 9’ W)] H =07 :l:la +2. (78)

This expression is essentially the same as expression (1.11). Thus, R*={a,} of the Bohr
model is the tangent space of S| at the origin.
The Euclidean measure I1Z. ., da, on s is, apart from the numeral factors,

dp,(4)=p’

flsin (y—‘z—”k)|ﬁ dB dy sin 0 d6 dg dv. (7.9)
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On the other hand, if we substitute § cos ¥ and B sin y for & and ¢; in equation (5.5},
respectively, we have

du,(Q)=|8 l%l sinh[ﬁﬁ sin (y—-%kﬂlﬁ df dysin 8 d¢ dy. (7.10)

Let wo(B, 7, ¢, 0, v) denote the eigenfunction [33-35] of the five-dimensional har-
monic oscillator, where @ denotes a set of quantum numbers. Let Q= {w}. Then
{wa(B, 7. ¢, 0, W) weQ} is a basis for L(s, p;). Therefore,

3 B sin(y—2nk/3)

Vi

%=t sinh[/2B sin(y — 2nk/3)]

serves as a basis for (S}, ity). As is desired from lims o Q=17+24, limg o du,(Q)
is proportional to du,(A).

)wm(ﬁ, v, &, 0, W)iwen}

8. Representation of crni(3)

Let S, O, K and k denote an SL(3, R) orbit, its origin, the isotropy subgroup and the
Lie algebra of K. Let Zecm(3) and U, —c“z The map Z — O'(Z) defined by

(P(Us)f)(Q) —f(Q)

=0(Z)f(Q) (8.1)

c—rO
is a representation of ¢m(3). Since
p(e %) f(QN =" f()

a(@y)=0, . For 4 €sg, the left side of equation (8.1) can be calculated with equation
(6.2). We denote by Z the element of sg which is mapped to Zes{ (3, R) by the isomorph-
ism k|sg:sg — sl (3, R).

Let
00 O 0 01 0 -1 0
A= 0 0 -1 A= 000 A;“'—" 1 0 0.
01 0 -1 0 0 0 00

Then {4, E,1i=1,2,3, p=0, 1, £2} is a basis for s/(3, R). In some step of calcula-
tion, it is convenient to use real symmetric matrices

000 0 0 1
B=10 0 1 B={0 ¢ 0

¢ 10 I 090

01 0 i 1 0 0
B3= I 00 H2=—- 0 -1 0

000 V2 0 00
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instead of E;; and E.,. Let Z,=(B,— A;) and Z,= (B;+ 4;). By means of those
matrices, the Lie algebras of isotropy subgroups are

so(3)=span Ay, Az, A3} s0(2, 1)=span{B,, B, A3}
m(2)=span{Z,, Z,, A3} mh(2)=span{Z,, Z;, Bs}
sa(2)=span{Z{, Z3, A, By, H3}.

Let k — L, be an irreducible unitary representation of X in H-. We denote by 6*(Z)
the skew Hermitian operator which represents Zek. Then, if k=e"%e X,

L.=exp(ec™(2)). (3.2)

In sections 4 and 7, Qe § is parametrized as O=rA0OrT, where AcA and reSO(3).
The expression is rewritten as Q= rA'20(rA"*)7, where A'?=diag(\/4z, 2. VAs) for
A=diag(li, A2, As)eA. If we denote ri'? by g, then 0=g,0g5=g4 - O. It is conveni-
ent 1o take exp(sofy) or exp(epbo+ &:H,) as A2 according to whether S is S5 or the
other orbits.

8.1. Angular momentum operators

If g.=exp(zA,), then Ug£=exp(s.3k). Since g;'gp=r1'%, where reSO(3),
\/ du(g;' - ©)/du(Q)=1. The expressions o(A,) have two different forms according
to whether S is S5 or the other orbits.

If =54, we can choose A(¢)g(#) as re SO(3). However,

e h(¢)g(8) =h($+5¢)g(8 + )h(y). (8.3)

As, A(Sw)AOK'(Sw)=A0, the rotation A(Sy) belongs to SA(2). Therefore,
Lissyy=exp(—8wo “(4;)). Calculating dg/de, d8/de and dy /de with equation (8.3),
we have

G(A,)"smqb—-!-coteco ¢-—+°f”s¢ ot (As) (8.42)
d¢ sind
1) =—cos & 2 A L)
o(Az)=~cos ¢ 69+00t @ cos ¢ 3¢+ — a{A3) (8.45)
o(A4 )~—-~-i (8.4¢)
3 a¢ .

If Sis one of $/'. S5, S5 and 8., we need to take A($)g(D)A(y) as re SO(3). From

e~ H($)g(O(y) =h(§+ 5¢)g(9+ 80)h(y +Sy)
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we can calculate d¢/ds, dO/d£ and dw/dg, to obtain

o(A,) =sin ¢ —+cot 8 cos b 55_::3 ;_% (8.52)
- cos¢p @
= —00S ¢ —~ Z-Z=E 0 5b
o(Ax) = —cos ¢ +coi & cos qﬁ 26 snd 0y (8.55)
o(As) =_é% (8.5¢)

8.2, Symumetric tensor operators

Instead of calculatmg the express:ons of c(E,,) directly at 0, it is easier to calculate
them at ¢'=r""- @ and the origin 0= gQ Q, and Jater transform them [36] to Q. If
Zesi(3, R) and heSl(3 R), then Ith' esf (3, R}. That is,

hZh™' = z A+ g dp E, ceR d,=(-1)"d.,eC.

i=1 u=-2

Let g,=heZ k™. Since h e i~ =exp(shZh™"),

3 2 .
Ug,=exp[€(z A+ ¥ dy Ep)].

=1 p=-2
Therefore,

(p(Ug,)f)(Q) /(D __ (

lim

=0

5 At T d, E)f(Q)

f=1 p==—2
= [z co(A)t Y d, G(Ey)]f(Q)) (8.6)
i=1 p==2

The left side of the above equation can be calculated with equation (6.2). Since o(Au)s
are known, we can ﬁnd o(E,)s from five linear equations.
Let g,=re® !, Then
af (Q)

fa - Oy - o

fdug:' - Q) - +
T ~1—.f6e if QeS3

5
~l+—¢ if 0e Sy or S,

%

Jdm2g™" 0)/du Q) =1 for any geSL(3, R). Since tEy ™' =32, DioE, equa-
tion (8.6) becomes

2 ~
[ T Df-,oG(Ev)]f(Q)=- (v@+£)f(Q) if Qe S3

Ve

- (%—E—)f(Q) if Qe S7 or S

=—%§2 if Qe Sy or S5
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Let g, =re“™r ) If QeS7, then g7 'go=rA'? e *M and g’ - Q=Q. Consequently,
the measure is unchanged by g, and k=e " belongs to SA(2). Therefore, L;'=
expleo™(H,)]. If O belongs to the other orbits,

17 O~ - LD af o

fdu(gz' - Q) . Ath . +
d,u(Q) =] 8 _‘12 1fQES3

Ao .
?»1"!' 2.2 if DeS,
where A, =exp(v28:—2/3¢&0) and A =exp(—28:—2/3¢). Since Ho=(E,+E_))/
V2, equation (8.6) implies that

[\} T (latD} —z)G(Ev)]f(Q)
—H)f(Q)  ifQest

__ {8 AEh . +
- (asz+al¥za)f(g) if QeS? or S

-9 if QeSi or 7.

682
If Zek and g,=ri'”exp(eZ)L™"r™", then g;'gp=gpexp(—¢Z). Therefore,
\/dp (gz'* ©)/du(@)=1 and the nght side of equation (8.6) is ™(Z) £ (Q).
If Z=H, then g.=rexp(eH.)r"", and the expression of the left side of equation
(8.6) is already known. We need 1o calculate the left side of equation {8.6) for 45, Bs.
The other elements of & are their linear combinations. Let

a(A)=1 (\/%Jr\/%) si(A)y=1 (\/%—\/%) i=1,2,3 (8.7)
i % o &

where i, j, k is a cyclic permutation of 1, 2, 3. Coefficients ¢; and d, in equation (8.6)
are calculated from the following formulae:

AV 4 A7 = 5 (A) Bet el A ) Ai AVBAT = s (M) At el A)Be

and
B[=—f(E1+E_|) B:=(E._|""El) B3=i(Ez_E_z}.
The expressrons for angular momentum operators in the body fixed frame also differ
accordmg as QeSs or not. If r, denotes the (7, j) component of re SO(3), then rAr "=
, 1 A, and therefore ~if ", = O'(ZJ i f,kA )= E, [ rjka(A ). I r=h{dIg(0)i(y), we
have the well known expressions

—iA;=—cot Bcos y ;I;—sin v %J“::g Z% (8.8a)
d 8 sing ¢

—id,=cot 8 —— — 3.8b

Wp=cot Bsin y 5 = C0S ¥ 0" 6 6 (8.85)

—i.)ff3=—i. (8.8¢)

dy
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However, if QeS5, since r=»h(¢)g(8),

1 d 3 . I
1] =—— —+cot @ A =i = —1A3=0"(A3). 8.9
TSm0 8 o (43) T =07 (4) (8:9)

With the above expressmns expressions for cr(EL,)s are calculated. All of them are
of the form o*(E,,) ZV-_zD,, @, 8, y3T,, where y is taken to be identically 0 on
S, We list the expressions of T,s below.

On S7,
Tia=1[20"(H) Fic™(B)] (8.10a)
Tay=1 [e ~VEaligh(2T) F o1(Z1)}
q:i_L( +cot 8¢ (A;))] (8.10h)
88 sin 8 \d¢
(J‘+—) (8.10¢)
580
On S5,
_il sl 2 _Mth ( o (Az) _es(h) )]
T*z z[ﬁ( 682 ;L[—/lz):': 1 33(2) 33(3.)‘%5 (811&)
Tey=3 [1%0— (Z):F 0 (Zz)+.9f“=l=m€5:l (8.115)
_(5_2
To—(Jg 630) (8.11¢)

where 1, =exp(v2¢:— v2/3&), o =exp(—22— 2/380).

On 84, the expressions of Ty and T, are the same as above, and

_ L
m=%[ﬁ(—i—’l‘ M)?(i" (B‘)—Sz'mxg)]. (8.12)

dgs it 4; s3(A) (L)

On Sy

O'(Ag) c3(L})
T“““[ & ( 55(4) ss(ft)‘xr’ﬂ (8.13a)

_%[am o (Ar) _ah) o efd), Jﬁ]

8.13%
S s s m w0 (8.139)

é
= _ .
To e (8.13¢)
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On S5, the expressions of T, and T.s are the same as above, and

l:iO'L(BI):FO'L(Bz)_Sl(;L)‘%,:Fsz(l) f:l

(8.14)

)=

Ty= ]

ad) | ey a) Gy

Transforming variables from g and &; to v=./44; and e=log/4,/4; or p=e®—~e”*¢
is straightforward.

9. CM(3) model Hamiltonian

If QeSy and B=./s+ &5 is small and the representatlon of SO(3) is trivial, O'(Ey)
approaches to —8/da,=—X2__; D} .., whete a, is given in equation (1.11) and

1 /(¢ x@) (:xf[ . A ) 8
= | —=+— My =3 Fi— =— 9.1
a2 ﬁ(aeg 26 T\t u-v o= deq e

where =328 and v=£,//2.
Therefore, the analogue of the Bohr Hamiltonian in the CM(3) model will be

#=—t T (CREENSEL)FC T (-1 QIO ©9.2)

2B .u——2 u=-2

where B and C are parameters which cannot be determined from the model.

The reason why only the representation of cm(3) in #*(S{, ) has the correspond-
ence with the Bohr model is as follows. Consider a quadratic form
A(y)=%}=1 Qyyiy;» where y=(pi,y, ). With formula (1.1), A(y)=
i (Bl x.p ) Let W(x, . .., X,) be a wavefunction of the A-particle system, dx,=
dxy, dxz, dxs, and

p,,(x,,}= ‘?(x,, ceay XA)"P(KH - ,XA) dX[ N dX”_| dx,,H e dx,q.

RBM—I)

Then {¥|A() > a1 [ B x0.) pa(%,) dx, 2 0. Therefore, if (¥|A(p)I¥)=0,
then j"(E, ,x,,,y,) pn(%,) dx,=0 for any ». As p.(x,)=0 and is not identically 0,
(EX| x:my:)?=0 for any n. As y is arbitrary, x,=0 for any n. Thus, the matrix (Qy)
must be positive definite. Only the representation in #%(S7, i) satisfies the condition.
We do not know if the other representations have applications in some field of physics
or not.
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